Inflammation Research

, Volume 66, Issue 3, pp 209–216 | Cite as

The biological function and significance of CD74 in immune diseases

  • Huiting Su
  • Ning Na
  • Xiaodong Zhang
  • Yong Zhao


CD74 (MHC class II invariant chain, Ii) is a non-polymorphic type II transmembrane glycoprotein. It is clear that, in addition to be an MHC class II chaperone, CD74 has a diversity of biological functions in physiological and pathological situations. CD74 also participates in other non-MHC II protein trafficking, such as angiotensin II type I receptor. In addition, CD74 is a cell membrane high-affinity receptor for macrophage migration inhibitory factor (MIF), D-dopachrome tautomerase (D-DT/MIF-2) and bacterial proteins. CD74 also regulates T-cell and B-cell developments, dendritic cell (DC) motility, macrophage inflammation, and thymic selection. The activation of receptor complex CD74/CD44 may lead to multiple intracellular signal pathways, such as the activation of the extracellular signal regulated kinase (ERK) 1 and 2, the PI3K-Akt signal transduction cascade, NFκB, and the AMP-activated protein kinase (AMPK) pathway. CD74 plays important roles in many inflammatory diseases, such as liver fibrosis, type I diabetes, systemic lupus erythematosus, and Alzheimer disease. In this study, we will focus on the immunological functions of CD74 molecules and its roles in immune-relevant disorders.


CD74 MIF Inflammation Innate immunity 



The authors wish to thank Dr. Yuzhu Hou for his kind review of the manuscript, and Mrs. Ling Li for her excellent laboratory management. This work was supported by grants from the National Natural Science Foundation of China for General and Key Programs (C81130055, C81072396, Y.Z.), Beijing Municipal Hospital Authority “Yangfan Program” (ZYLX201408, X.Z.), Knowledge Innovation Program of Chinese Academy of Sciences (XDA04020202-19, Y.Z.), and the CAS/SAFEA International Partnership Program for Creative Research Teams (Y.Z.).


  1. 1.
    Borghese F, Clanchy FI. CD74: an emerging opportunity as a therapeutic target in cancer and autoimmune disease. Expert Opin Ther Targets. 2011;15:237–51.CrossRefPubMedGoogle Scholar
  2. 2.
    Calandra T, Roger T. Macrophage migration inhibitory factor: a regulator of innate immunity. Nat Rev Immunol. 2003;3:791–800.CrossRefPubMedGoogle Scholar
  3. 3.
    Leng L, Metz CN, Fang Y, Xu J, Donnelly S, Baugh J, Delohery T, Chen Y, Mitchell RA, Bucala R. MIF signal transduction initiated by binding to CD74. J Exp Med. 2003;197:1467–76.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Starlets D, Gore Y, Binsky I, Haran M, Harpaz N, Shvidel L, Becker-Herman S, Berrebi A, Shachar I. Cell-surface CD74 initiates a signaling cascade leading to cell proliferation and survival. Blood. 2006;107:4807–16.CrossRefPubMedGoogle Scholar
  5. 5.
    Merk M, Zierow S, Leng L, Das R, Du X, Schulte W, Fan J, Lue H, Chen Y, Xiong H, Chagnon F, Bernhagen J, Lolis E, Mor G, Lesur O, Bucala R. The D-dopachrome tautomerase (DDT) gene product is a cytokine and functional homolog of macrophage migration inhibitory factor (MIF). Proc Natl Acad Sci USA. 2011;108:E577–85.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Matza D, Lantner F, Bogoch Y, Flaishon L, Hershkoviz R, Shachar I. Invariant chain induces B cell maturation in a process that is independent of its chaperonic activity. Proc Natl Acad Sci USA. 2002;99:3018–23.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Shachar I, Flavell RA. Requirement for invariant chain in B cell maturation and function. Science. 1996;274:106–8.CrossRefPubMedGoogle Scholar
  8. 8.
    Arunachalam B, Lamb CA, Cresswell P. Transport properties of free and MHC class II-associated oligomers containing different isoforms of human invariant chain. Int Immunol. 1994;6:439–51.CrossRefPubMedGoogle Scholar
  9. 9.
    Strubin M, Mach B, Long EO. The complete sequence of the mRNA for the HLA-DR-associated invariant chain reveals a polypeptide with an unusual transmembrane polarity. EMBO J. 1984;3:869–72.PubMedPubMedCentralGoogle Scholar
  10. 10.
    Pyrz M, Wang B, Wabl M, Pedersen FS. A retroviral mutagenesis screen identifies Cd74 as a common insertion site in murine B-lymphomas and reveals the existence of a novel IFNgamma-inducible Cd74 isoform. Mol Cancer. 2010;9:86.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Warmerdam PA, Long EO, Roche PA. Isoforms of the invariant chain regulate transport of MHC class II molecules to antigen processing compartments. J Cell Biol. 1996;133:281–91.CrossRefPubMedGoogle Scholar
  12. 12.
    Roche PA, Teletski CL, Stang E, Bakke O, Long EO. Cell surface HLA-DR-invariant chain complexes are targeted to endosomes by rapid internalization. Proc Natl Acad Sci USA. 1993;90:8581–5.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Momburg F, Koch N, Moller P, Moldenhauer G, Butcher GW, Hammerling GJ. Differential expression of Ia and Ia-associated invariant chain in mouse tissues after in vivo treatment with IFN-gamma. J Immunol. 1986;136:940–8.PubMedGoogle Scholar
  14. 14.
    Miller EJ, Li J, Leng L, McDonald C, Atsumi T, Bucala R, Young LH. Macrophage migration inhibitory factor stimulates AMP-activated protein kinase in the ischaemic heart. Nature. 2008;451:578–82.CrossRefPubMedGoogle Scholar
  15. 15.
    Heinrichs D, Knauel M, Offermanns C, Berres ML, Nellen A, Leng L, Schmitz P, Bucala R, Trautwein C, Weber C, Bernhagen J, Wasmuth HE. Macrophage migration inhibitory factor (MIF) exerts antifibrotic effects in experimental liver fibrosis via CD74. Proc Natl Acad Sci USA. 2011;108:17444–9.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Burton JD, Ely S, Reddy PK, Stein R, Gold DV, Cardillo TM, Goldenberg DM. CD74 is expressed by multiple myeloma and is a promising target for therapy. Clin Cancer Res. 2004;10:6606–11.CrossRefPubMedGoogle Scholar
  17. 17.
    Datta MW, Shahsafaei A, Nadler LM, Freeman GJ, Dorfman DM. Expression of MHC class II-associated invariant chain (Ii;CD74) in thymic epithelial neoplasms. Appl Immunohistochem Mol Morphol. 2000;8:210–5.PubMedGoogle Scholar
  18. 18.
    Otterstrom C, Soltermann A, Opitz I, Felley-Bosco E, Weder W, Stahel RA, Triponez F, Robert JH, Serre-Beinier V. CD74: a new prognostic factor for patients with malignant pleural mesothelioma. Br J Cancer. 2014;110:2040–6.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Sanchez-Nino MD, Sanz AB, Ruiz-Andres O, Poveda J, Izquierdo MC, Selgas R, Egido J, Ortiz A. MIF, CD74 and other partners in kidney disease: tales of a promiscuous couple. Cytokine Growth Factor Rev. 2013;24:23–40.CrossRefPubMedGoogle Scholar
  20. 20.
    Martin-Ventura JL, Madrigal-Matute J, Munoz-Garcia B, Blanco-Colio LM, Van Oostrom M, Zalba G, Fortuno A, Gomez-Guerrero C, Ortega L, Ortiz A, Diez J, Egido J. Increased CD74 expression in human atherosclerotic plaques: contribution to inflammatory responses in vascular cells. Cardiovasc Res. 2009;83:586–94.CrossRefPubMedGoogle Scholar
  21. 21.
    Beswick EJ, Das S, Pinchuk IV, Adegboyega P, Suarez G, Yamaoka Y, Reyes VE. Helicobacter pylori-induced IL-8 production by gastric epithelial cells up-regulates CD74 expression. J Immunol. 2005;175:171–6.CrossRefPubMedGoogle Scholar
  22. 22.
    Lawrance IC, Fiocchi C, Chakravarti S. Ulcerative colitis and Crohn’s disease: distinctive gene expression profiles and novel susceptibility candidate genes. Hum Mol Genet. 2001;10:445–56.CrossRefPubMedGoogle Scholar
  23. 23.
    Huang D, Cai DT, Chua RY, Kemeny DM, Wong SH. Nitric-oxide synthase 2 interacts with CD74 and inhibits its cleavage by caspase during dendritic cell development. J Biol Chem. 2008;283:1713–22.CrossRefPubMedGoogle Scholar
  24. 24.
    Schneppenheim J, Huttl S, Mentrup T, Lullmann-Rauch R, Rothaug M, Engelke M, Dittmann K, Dressel R, Araki M, Araki K, Wienands J, Fluhrer R, Saftig P, Schroder B. The intramembrane proteases signal Peptide peptidase-like 2a and 2b have distinct functions in vivo. Mol Cell Biol. 2014;34:1398–411.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Huttl S, Helfrich F, Mentrup T, Held S, Fukumori A, Steiner H, Saftig P, Fluhrer R, Schroder B. Substrate determinants of Signal peptide peptidase-like 2a (SPPL2a)-mediated Intramembrane Proteolysis of the Invariant chain CD74. Biochem J. 2016;473(10):1405–22.CrossRefPubMedGoogle Scholar
  26. 26.
    Lamb CA, Cresswell P. Assembly and transport properties of invariant chain trimers and HLA-DR-invariant chain complexes. J Immunol. 1992;148:3478–82.PubMedGoogle Scholar
  27. 27.
    Roche PA, Marks MS, Cresswell P. Formation of a nine-subunit complex by HLA class II glycoproteins and the invariant chain. Nature. 1991;354:392–4.CrossRefPubMedGoogle Scholar
  28. 28.
    Ogrinc T, Dolenc I, Ritonja A, Turk V. Purification of the complex of cathepsin L and the MHC class II-associated invariant chain fragment from human kidney. FEBS Lett. 1993;336:555–9.CrossRefPubMedGoogle Scholar
  29. 29.
    Szaszak M, Chen HD, Chen HC, Baukal A, Hunyady L, Catt KJ. Identification of the invariant chain (CD74) as an angiotensin AGTR1-interacting protein. J Endocrinol. 2008;199:165–76.CrossRefPubMedGoogle Scholar
  30. 30.
    Leth-Larsen R, Lund R, Hansen HV, Laenkholm AV, Tarin D, Jensen ON, Ditzel HJ. Metastasis-related plasma membrane proteins of human breast cancer cells identified by comparative quantitative mass spectrometry. Mol Cell Proteomics. 2009;8:1436–49.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Javeed A, Zhao Y, Zhao Y. Macrophage-migration inhibitory factor: role in inflammatory diseases and graft rejection. Inflamm Res. 2008;57:45–50.CrossRefPubMedGoogle Scholar
  32. 32.
    Simons D, Grieb G, Hristov M, Pallua N, Weber C, Bernhagen J, Steffens G. Hypoxia-induced endothelial secretion of macrophage migration inhibitory factor and role in endothelial progenitor cell recruitment. J Cell Mol Med. 2011;15:668–78.CrossRefPubMedGoogle Scholar
  33. 33.
    Pantouris G, Syed MA, Fan C, Rajasekaran D, Cho TY, Rosenberg EM Jr, Bucala R, Bhandari V, Lolis EJ. An analysis of MIF structural features that control functional activation of CD74. Chem Biol. 2015;22:1197–205.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Bernhagen J, Krohn R, Lue H, Gregory JL, Zernecke A, Koenen RR, Dewor M, Georgiev I, Schober A, Leng L, Kooistra T, Fingerle-Rowson G, Ghezzi P, Kleemann R, McColl SR, Bucala R, Hickey MJ, Weber C. MIF is a noncognate ligand of CXC chemokine receptors in inflammatory and atherogenic cell recruitment. Nat Med. 2007;13:587–96.CrossRefPubMedGoogle Scholar
  35. 35.
    Gregory JL, Leech MT, David JR, Yang YH, Dacumos A, Hickey MJ. Reduced leukocyte-endothelial cell interactions in the inflamed microcirculation of macrophage migration inhibitory factor-deficient mice. Arthritis Rheum. 2004;50:3023–34.CrossRefPubMedGoogle Scholar
  36. 36.
    Bernhagen J, Bacher M, Calandra T, Metz CN, Doty SB, Donnelly T, Bucala R. An essential role for macrophage migration inhibitory factor in the tuberculin delayed-type hypersensitivity reaction. J Exp Med. 1996;183:277–82.CrossRefPubMedGoogle Scholar
  37. 37.
    Leech M, Metz C, Hall P, Hutchinson P, Gianis K, Smith M, Weedon H, Holdsworth SR, Bucala R, Morand EF. Macrophage migration inhibitory factor in rheumatoid arthritis: evidence of proinflammatory function and regulation by glucocorticoids. Arthritis Rheum. 1999;42:1601–8.CrossRefPubMedGoogle Scholar
  38. 38.
    Liu YH, Lin CY, Lin WC, Tang SW, Lai MK, Lin JY. Up-regulation of vascular endothelial growth factor-D expression in clear cell renal cell carcinoma by CD74: a critical role in cancer cell tumorigenesis. J Immunol. 2008;181:6584–94.CrossRefPubMedGoogle Scholar
  39. 39.
    Calandra T, Echtenacher B, Roy DL, Pugin J, Metz CN, Hultner L, Heumann D, Mannel D, Bucala R, Glauser MP. Protection from septic shock by neutralization of macrophage migration inhibitory factor. Nat Med. 2000;6:164–70.CrossRefPubMedGoogle Scholar
  40. 40.
    Bach JP, Rinn B, Meyer B, Dodel R, Bacher M. Role of MIF in inflammation and tumorigenesis. Oncology. 2008;75:127–33.CrossRefPubMedGoogle Scholar
  41. 41.
    Bacher M, Metz CN, Calandra T, Mayer K, Chesney J, Lohoff M, Gemsa D, Donnelly T, Bucala R. An essential regulatory role for macrophage migration inhibitory factor in T-cell activation. Proc Natl Acad Sci USA. 1996;93:7849–54.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Calandra T, Bernhagen J, Metz CN, Spiegel LA, Bacher M, Donnelly T, Cerami A, Bucala R. MIF as a glucocorticoid-induced modulator of cytokine production. Nature. 1995;377:68–71.CrossRefPubMedGoogle Scholar
  43. 43.
    Mikulowska A, Metz CN, Bucala R, Holmdahl R. Macrophage migration inhibitory factor is involved in the pathogenesis of collagen type II-induced arthritis in mice. J Immunol. 1997;158:5514–7.PubMedGoogle Scholar
  44. 44.
    Santos L, Hall P, Metz C, Bucala R, Morand EF. Role of macrophage migration inhibitory factor (MIF) in murine antigen-induced arthritis: interaction with glucocorticoids. Clin Exp Immunol. 2001;123:309–14.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Donnelly SC, Haslett C, Reid PT, Grant IS, Wallace WA, Metz CN, Bruce LJ, Bucala R. Regulatory role for macrophage migration inhibitory factor in acute respiratory distress syndrome. Nat Med. 1997;3:320–3.CrossRefPubMedGoogle Scholar
  46. 46.
    Daun JM, Cannon JG. Macrophage migration inhibitory factor antagonizes hydrocortisone-induced increases in cytosolic IkappaBalpha. Am J Physiol Regul Integr Comp Physiol. 2000;279:R1043–9.PubMedGoogle Scholar
  47. 47.
    Le Noury DA, Mosebi S, Papathanasopoulos MA, Hewer R. Functional roles of HIV-1 Vpu and CD74: details and implications of the Vpu-CD74 interaction. Cell Immunol. 2015;298:25–32.CrossRefPubMedGoogle Scholar
  48. 48.
    Kiyota T, Zhang G, Morrison CM, Bosch ME, Weir RA, Lu Y, Dong W, Gendelman HE. AAV2/1 CD74 gene transfer reduces beta-amyloidosis and improves learning and memory in a mouse model of Alzheimer’s disease. Mol Ther. 2015;23:1712–21.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Wilkinson RD, Magorrian SM, Williams R, Young A, Small DM, Scott CJ, Burden RE. CCL2 is transcriptionally controlled by the lysosomal protease cathepsin S in a CD74-dependent manner. Oncotarget. 2015;6:29725–39.PubMedPubMedCentralGoogle Scholar
  50. 50.
    Mellanby RJ, Koonce CH, Monti A, Phillips JM, Cooke A, Bikoff EK. Loss of invariant chain protects nonobese diabetic mice against type 1 diabetes. J Immunol. 2006;177:7588–98.CrossRefPubMedGoogle Scholar
  51. 51.
    Lue H, Thiele M, Franz J, Dahl E, Speckgens S, Leng L, Fingerle-Rowson G, Bucala R, Luscher B, Bernhagen J. Macrophage migration inhibitory factor (MIF) promotes cell survival by activation of the Akt pathway and role for CSN5/JAB1 in the control of autocrine MIF activity. Oncogene. 2007;26:5046–59.CrossRefPubMedGoogle Scholar
  52. 52.
    Shi X, Leng L, Wang T, Wang W, Du X, Li J, McDonald C, Chen Z, Murphy JW, Lolis E, Noble P, Knudson W, Bucala R. CD44 is the signaling component of the macrophage migration inhibitory factor-CD74 receptor complex. Immunity. 2006;25:595–606.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Meyer-Siegler KL, Iczkowski KA, Leng L, Bucala R, Vera PL. Inhibition of macrophage migration inhibitory factor or its receptor (CD74) attenuates growth and invasion of DU-145 prostate cancer cells. J Immunol. 2006;177:8730–9.CrossRefPubMedGoogle Scholar
  54. 54.
    Lee CY, Su MJ, Huang CY, Chen MY, Hsu HC, Lin CY, Tang CH. Macrophage migration inhibitory factor increases cell motility and up-regulates alphavbeta3 integrin in human chondrosarcoma cells. J Cell Biochem. 2012;113:1590–8.PubMedGoogle Scholar
  55. 55.
    Roger T, Schneider A, Weier M, Sweep FC, Le Roy D, Bernhagen J, Calandra T, Giannoni E. High expression levels of macrophage migration inhibitory factor sustain the innate immune responses of neonates. Proc Natl Acad Sci USA. 2016;113:E997–1005.CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Kim HS, Kim MJ, Kim EJ, Yang Y, Lee MS, Lim JS. Berberine-induced AMPK activation inhibits the metastatic potential of melanoma cells via reduction of ERK activity and COX-2 protein expression. Biochem Pharmacol. 2012;83:385–94.CrossRefPubMedGoogle Scholar
  57. 57.
    Lee CW, Wong LL, Tse EY, Liu HF, Leong VY, Lee JM, Hardie DG, Ng IO, Ching YP. AMPK promotes p53 acetylation via phosphorylation and inactivation of SIRT1 in liver cancer cells. Cancer Res. 2012;72:4394–404.CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Zhang H, Liu C, Cheng S, Wang X, Li W, Charreyre C, Audonnet JC, He Q. Porcine CD74 is involved in the inflammatory response activated by nuclear factor kappa B during porcine circovirus type 2 (PCV-2) infection. Arch Virol. 2013;158:2285–95.CrossRefPubMedGoogle Scholar
  59. 59.
    Matza D, Kerem A, Medvedovsky H, Lantner F, Shachar I. Invariant chain-induced B cell differentiation requires intramembrane proteolytic release of the cytosolic domain. Immunity. 2002;17:549–60.CrossRefPubMedGoogle Scholar
  60. 60.
    Becker-Herman S, Arie G, Medvedovsky H, Kerem A, Shachar I. CD74 is a member of the regulated intramembrane proteolysis-processed protein family. Mol Biol Cell. 2005;16:5061–9.CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Binsky I, Haran M, Starlets D, Gore Y, Lantner F, Harpaz N, Leng L, Goldenberg DM, Shvidel L, Berrebi A, Bucala R, Shachar I. IL-8 secreted in a macrophage migration-inhibitory factor- and CD74-dependent manner regulates B cell chronic lymphocytic leukemia survival. Proc Natl Acad Sci USA. 2007;104:13408–13.CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Schneppenheim J, Dressel R, Huttl S, Lullmann-Rauch R, Engelke M, Dittmann K, Wienands J, Eskelinen EL, Hermans-Borgmeyer I, Fluhrer R, Saftig P, Schroder B. The intramembrane protease SPPL2a promotes B cell development and controls endosomal traffic by cleavage of the invariant chain. J Exp Med. 2013;210:41–58.CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Beisner DR, Langerak P, Parker AE, Dahlberg C, Otero FJ, Sutton SE, Poirot L, Barnes W, Young MA, Niessen S, Wiltshire T, Bodendorf U, Martoglio B, Cravatt B, Cooke MP. The intramembrane protease Sppl2a is required for B cell and DC development and survival via cleavage of the invariant chain. J Exp Med. 2013;210:23–30.CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Huttl S, Klasener K, Schweizer M, Schneppenheim J, Oberg HH, Kabelitz D, Reth M, Saftig P, Schroder B. Processing of CD74 by the intramembrane protease SPPL2a is critical for B cell receptor signaling in transitional B cells. J Immunol. 2015;195:1548–63.CrossRefPubMedGoogle Scholar
  65. 65.
    Ran Y, Ladd GZ, Ceballos-Diaz C, Jung JI, Greenbaum D, Felsenstein KM, Golde TE. Differential inhibition of signal peptide peptidase family members by established gamma-secretase inhibitors. PLoS One. 2015;10:e0128619.CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Nemajerova A, Mena P, Fingerle-Rowson G, Moll UM, Petrenko O. Impaired DNA damage checkpoint response in MIF-deficient mice. EMBO J. 2007;26:987–97.CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Nguyen MT, Beck J, Lue H, Funfzig H, Kleemann R, Koolwijk P, Kapurniotu A, Bernhagen J. A 16-residue peptide fragment of macrophage migration inhibitory factor, MIF- (50–65), exhibits redox activity and has MIF-like biological functions. J Biol Chem. 2003;278:33654–71.CrossRefPubMedGoogle Scholar
  68. 68.
    Lue H, Kapurniotu A, Fingerle-Rowson G, Roger T, Leng L, Thiele M, Calandra T, Bucala R, Bernhagen J. Rapid and transient activation of the ERK MAPK signalling pathway by macrophage migration inhibitory factor (MIF) and dependence on JAB1/CSN5 and Src kinase activity. Cell Signal. 2006;18:688–703.CrossRefPubMedGoogle Scholar
  69. 69.
    Xia W, Zhang F, Xie C, Jiang M, Hou M. Macrophage migration inhibitory factor confers resistance to senescence through CD74-dependent AMPK-FOXO3a signaling in mesenchymal stem cells. Stem Cell Res Ther. 2015;6:82.CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Lv J, Huang XR, Klug J, Frohlich S, Lacher P, Xu A, Meinhardt A, Lan HY. Ribosomal protein S19 is a novel therapeutic agent in inflammatory kidney disease. Clin Sci Lond. 2013;124:627–37.CrossRefPubMedGoogle Scholar
  71. 71.
    Hare AA, Leng L, Gandavadi S, Du X, Cournia Z, Bucala R, Jorgensen WL. Optimization of N-benzyl-benzoxazol-2-ones as receptor antagonists of macrophage migration inhibitory factor (MIF). Bioorg Med Chem Lett. 2010;20:5811–4.CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Sauler M, Zhang Y, Min JN, Leng L, Shan P, Roberts S, Jorgensen WL, Bucala R, Lee PJ. Endothelial CD74 mediates macrophage migration inhibitory factor protection in hyperoxic lung injury. FASEB J. 2015;29:1940–9.CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Berkova Z, Wang S, Ao X, Wise JF, Braun FK, Rezaeian AH, Sehgal L, Goldenberg DM, Samaniego F. CD74 interferes with the expression of fas receptor on the surface of lymphoma cells. J Exp Clin Cancer Res. 2014;33:80.CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Djudjaj S, Lue H, Rong S, Papasotiriou M, Klinkhammer BM, Zok S, Klaener O, Braun GS, Lindenmeyer MT, Cohen CD, Bucala R, Tittel AP, Kurts C, Moeller MJ, Floege J, Ostendorf T, Bernhagen J, Boor P. Macrophage migration inhibitory factor mediates proliferative GN via CD74. J Am Soc Nephrol 2015;27(6):1650–64.Google Scholar
  75. 75.
    Rice EK, Nikolic-Paterson DJ, David JR, Bucala R, Metz CN, Atkins RC, Tesch GH. Macrophage accumulation and renal fibrosis are independent of macrophage migration inhibitory factor in mouse obstructive nephropathy. Nephrol Carlton. 2004;9:278–87.CrossRefGoogle Scholar
  76. 76.
    Sanchez-Zamora Y, Terrazas LI, Vilches-Flores A, Leal E, Juarez I, Whitacre C, Kithcart A, Pruitt J, Sielecki T, Satoskar AR, Rodriguez-Sosa M. Macrophage migration inhibitory factor is a therapeutic target in treatment of non-insulin-dependent diabetes mellitus. FASEB J. 2010;24:2583–90.CrossRefPubMedGoogle Scholar
  77. 77.
    Hoi AY, Hickey MJ, Hall P, Yamana J, O’Sullivan KM, Santos LL, James WG, Kitching AR, Morand EF. Macrophage migration inhibitory factor deficiency attenuates macrophage recruitment, glomerulonephritis, and lethality in MRL/lpr mice. J Immunol. 2006;177:5687–96.CrossRefPubMedGoogle Scholar
  78. 78.
    Hsieh CY, Chen CL, Lin YS, Yeh TM, Tsai TT, Hong MY, Lin CF. Macrophage migration inhibitory factor triggers chemotaxis of CD74 + CXCR2 + NKT cells in chemically induced IFN-gamma-mediated skin inflammation. J Immunol. 2014;193:3693–703.CrossRefPubMedGoogle Scholar
  79. 79.
    Jose MD, David JR, Atkins RC, Chadban SJ. Blockade of macrophage migration inhibitory factor does not prevent acute renal allograft rejection. Am J Transplant. 2003;3:1099–106.CrossRefPubMedGoogle Scholar
  80. 80.
    Kaufman JL, Niesvizky R, Stadtmauer EA, Chanan-Khan A, Siegel D, Horne H, Wegener WA, Goldenberg DM. Phase I, multicentre, dose-escalation trial of monotherapy with milatuzumab (humanized anti-CD74 monoclonal antibody) in relapsed or refractory multiple myeloma. Br J Haematol. 2013;163:478–86.CrossRefPubMedGoogle Scholar
  81. 81.
    Martin P, Furman RR, Rutherford S, Ruan J, Ely S, Greenberg J, Coleman M, Goldsmith SJ, Leonard JP. Phase I study of the anti-CD74 monoclonal antibody milatuzumab (hLL1) in patients with previously treated B-cell lymphomas. Leuk Lymphoma. 2015;56:3065–70.CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Christian BA, Poi M, Jones JA, Porcu P, Maddocks K, Flynn JM, Benson DM Jr, Phelps MA, Wei L, Byrd JC, Wegener WA, Goldenberg DM, Baiocchi RA, Blum KA. The combination of milatuzumab, a humanized anti-CD74 antibody, and veltuzumab, a humanized anti-CD20 antibody, demonstrates activity in patients with relapsed and refractory B-cell non-Hodgkin lymphoma. Br J Haematol. 2015;169:701–10.CrossRefPubMedGoogle Scholar
  83. 83.
    Frolich D, Blassfeld D, Reiter K, Giesecke C, Daridon C, Mei HE, Burmester GR, Goldenberg DM, Salama A, Dorner T. The anti-CD74 humanized monoclonal antibody, milatuzumab, which targets the invariant chain of MHC II complexes, alters B-cell proliferation, migration, and adhesion molecule expression. Arthritis Res Ther. 2012;14:R54.CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    Hertlein E, Triantafillou G, Sass EJ, Hessler JD, Zhang X, Jarjoura D, Lucas DM, Muthusamy N, Goldenberg DM, Lee RJ, Byrd JC. Milatuzumab immunoliposomes induce cell death in CLL by promoting accumulation of CD74 on the surface of B cells. Blood. 2010;116:2554–8.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing 2016

Authors and Affiliations

  1. 1.Transplantation Biology Research Division, State Key Laboratory of Membrane Biology, Institute of ZoologyChinese Academy of SciencesBeijingChina
  2. 2.University of Chinese Academy of SciencesBeijingChina
  3. 3.Department of Kidney TransplantationThe Third Affiliated Hospital of Sun Yat-sen UniversityGuangzhouChina
  4. 4.Department of Urology, Beijing Chaoyang HospitalCapital Medical UniversityBeijingChina

Personalised recommendations