Inflammation Research

, Volume 66, Issue 1, pp 13–15 | Cite as

M2 macrophages do not fly into a “RAGE”



Tumor-associated macrophages (TAMs) are key elements in orchestrating host responses inside tumor stroma. This population may undergo a polarized activation process, thus rendering a heterogeneous spectrum of phenotypes, where the classically activated type 1 macrophages (M1) and the alternative activated type 2 macrophages (M2) represent two extreme phenotypes. In this commentary, based on very recent research findings, we intend to highlight how complex could be the crosstalk among all components of tumor stroma, where the coexistence of non-natural partners may even skew the canonical responses that we can expect.


Receptor of advanced glycation end products Tumor microenvironment Macrophage polarization HMGB1 M2 macrophages 



This work was enabled by Comisión Nacional de Investigación Científica y Tecnológica (CONICYT), Programa FONDECYT, Grant number 1130337 (AR).


  1. 1.
    Brownlee M. Advanced protein glycosylation in diabetes and aging. Annu Rev Med. 1995;46:223–34.CrossRefPubMedGoogle Scholar
  2. 2.
    Rojas A, Morales MA. Advanced glycation and endothelial functions: a link towards vascular complications in diabetes. Life Sci. 2004;76:715–30.CrossRefPubMedGoogle Scholar
  3. 3.
    Schmidt AM, Hori O, Cao R, Yan SD, Brett J, Wautier JL, Ogawa S, Kuwabara K, Matsumoto M, Stern D. RAGE: a novel cellular receptor for advanced glycation end products. Diabetes. 1996;45:S77–80.CrossRefPubMedGoogle Scholar
  4. 4.
    Rojas A, Delgado-López F, González I, Pérez-Castro R, Romero J, Rojas I. The receptor for advanced glycation end-products: a complex signaling scenario for a promiscuous receptor. Cell Signal. 2013;25:609–14.CrossRefPubMedGoogle Scholar
  5. 5.
    Alexiou P, Chatzopoulou M, Pegklidou K, Demopoulos VJ. RAGE: a multi-ligand receptor unveiling novel insights in health and disease. Curr Med Chem. 2010;17:2232–52.CrossRefPubMedGoogle Scholar
  6. 6.
    González I, Romero J, Rodríguez BL, Pérez-Castro R, Rojas A. The immunobiology of the receptor of advanced glycation end-products: trends and challenges. Immunobiology. 2013;218:790–7.CrossRefPubMedGoogle Scholar
  7. 7.
    van Zoelen MA, Achouiti A, van der Poll T. RAGE during infectious diseases. Front Biosci (Schol Ed). 2011;1(3):1119–32.CrossRefGoogle Scholar
  8. 8.
    Donato R. RAGE: a single receptor for several ligands and different cellular responses: the case of certain S100 proteins. Curr Mol Med. 2007;7:711–24.CrossRefPubMedGoogle Scholar
  9. 9.
    Coffelt SB, Scandurro AB. Tumours sound the alarmin(s). Cancer Res. 2008;68:6482–5.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Rojas A, Figueroa H, Morales E. Fueling inflammation at tumor microenvironment: the role of multiligand/RAGE axis. Carcinogenesis. 2010;31:334–41.CrossRefPubMedGoogle Scholar
  11. 11.
    Hanahan D, Coussens LM. Accessories to the crime: functions of cells recruited to the tumor microenvironment. Cancer Cell. 2012;21:309–22.CrossRefPubMedGoogle Scholar
  12. 12.
    Gajewski TF, Schreiber H, Fu YX. Innate and adaptive immune cells in the tumor microenvironment. Nat Immunol. 2013;14:1014–22.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Thakur R, Mishra DP. Matrix reloaded: CCN, Tenascin and SIBLING group of matricellular proteins in orchestrating cancer hallmark capabilities. Pharmacol Ther. 2016.Google Scholar
  14. 14.
    Multhaupt HA, Leitinger B, Gullberg D, Couchman JR. Extracellular matrix component signaling in cancer. Adv Drug Deliv Rev. 2016;97:28–40.CrossRefPubMedGoogle Scholar
  15. 15.
    Pickup MW, Mouw JK, Weaver VM. The extracellular matrix modulates the hallmarks of cancer. EMBO Rep. 2014;15:1243–53.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Galdiero MR, Garlanda C, Jaillon S, Marone G, Mantovani A. Tumor associated macrophages and neutrophils in tumor progression. J Cell Physiol. 2013;228:1404–12.CrossRefPubMedGoogle Scholar
  17. 17.
    Augsten M. Cancer-associa ted fibroblasts as another polarized cell type of the tumor microenvironment. Front Oncol. 2014;27(4):62.Google Scholar
  18. 18.
    Motwani MP, Gilroy DW. Macrophage development and polarization in chronic inflammation. Semin Immunol. 2015;27:257–66.CrossRefPubMedGoogle Scholar
  19. 19.
    Komohara Y, Fujiwara Y, Ohnishi K, Takeya M. Tumor-associated macrophages: potential therapeutic targets for anti-cancer therapy. Adv Drug Deliv Rev. 2016;99(Pt B):180–5.Google Scholar
  20. 20.
    Jinushi M, Komohara Y. Tumor-associated macrophages as an emerging target against tumors: creating a new path from bench to bedside. Biochim Biophys Acta. 2015;1855:123–30.PubMedGoogle Scholar
  21. 21.
    Sica A, Mantovani A. Macrophage plasticity and polarization: in vivo veritas. J Clin Invest. 2012;122:787–95.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Sica A, Erreni M, Allavena P, Porta C. Macrophage polarization in pathology. Cell Mol Life Sci. 2015;72:4111–26.CrossRefPubMedGoogle Scholar
  23. 23.
    Novoselov VV, Sazonova MA, Ivanova EA. Orekhov AN Study of the activated macrophage transcriptome. Exp Mol Pathol. 2015;99:575–80.CrossRefPubMedGoogle Scholar
  24. 24.
    Becker M, De Bastiani MA, Parisi MM, Guma FT, Markoski MM, Castro MA, Kaplan MH, Barbé-Tuana FM, Klamt F. Integrated transcriptomics establish macrophage polarization signatures and have potential applications for clinical health and disease. Sci Rep. 2015;5:13351. doi:10.1038/srep13351.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Rojas A, Delgado-López F, Perez-Castro R, Gonzalez I, Romero J, Rojas I, Araya P, Añazco C, Morales E, Llanos E. HMGB1 enhances the protumoral activities of M2 macrophages by a RAGE-dependent mechanism. Tumour Biol. 2016;37:3321–9.CrossRefPubMedGoogle Scholar
  26. 26.
    Rojas A, Araya P, Romero J, Delgado-López F, Pérez-Castro R, González I, Añazco A, Morales E, Llanos J, Vidal-Vanaclocha F. HMGB1-mediated RAGE activation mechanism in M2 macrophages [abstract]. In: Proceedings of the 107th Annual Meeting of the American Association for Cancer Research. 2016 Apr 16–20; New Orleans, LA. Philadelphia (PA): AACR; Cancer Res 2016;76 (14 Suppl):Abstract nr 725.Google Scholar
  27. 27.
    Huber R, Meier B, Otsuka A, Fenini G, Satoh T, Gehrke S, Widmer D, Levesque MP, Mangana J, Kerl K, Gebhardt C, Fujii H, Nakashima C, Nonomura Y, Kabashima K, Dummer R, Contassot E, French LE. Tumour hypoxia promotes melanoma growth and metastasis via high mobility GROUP box-1 and M2-like macrophages. Sci Rep. 2016;18(6):29914. doi:10.1038/srep29914.CrossRefGoogle Scholar
  28. 28.
    Tang X. Tumor-associated macrophages as potential diagnostic and prognostic biomarkers in breast cancer. Cancer Lett. 2013;332:3–10.CrossRefPubMedGoogle Scholar
  29. 29.
    Lan C, Huang X, Lin S, Huang H, Cai Q, Wan T, Lu J, Liu J. Expression of M2-polarized macrophages is associated with poor prognosis for advanced epithelial ovarian cancer. Technol Cancer Res Treat. 2013;12:259–67.PubMedGoogle Scholar
  30. 30.
    Medrek C, Pontén F, Jirström K, Leandersson K. The presence of tumor associated macrophages in tumor stroma as a prognostic marker for breast cancer patients. BMC Cancer. 2012;12:306. doi:10.1186/1471-2407-12-306.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing 2016

Authors and Affiliations

  • Armando Rojas
    • 1
  • Carolina Añazco
    • 1
  • Paulina Araya
    • 1
  1. 1.Biomedical Research Laboratories, Medicine FacultyCatholic University of MauleTalcaChile

Personalised recommendations