Skip to main content

Advertisement

Log in

NOD2 induces autophagy to control AIEC bacteria infectiveness in intestinal epithelial cells

  • Original Research Paper
  • Published:
Inflammation Research Aims and scope Submit manuscript

Abstract

Objective

The importance of autophagy in mechanisms underlying inflammation has been highlighted. Downstream effects of the bacterial sensor NOD2 include autophagy induction. Recently, a relationship between defects in autophagy and adherent/invasive Escherichia coli (AIEC) persistence has emerged. The present study aims at investigating the interplay between autophagy, NOD2 and AIEC bacteria and assessing the expression level of autophagic proteins in intestinal biopsies of pediatric patients with inflammatory bowel disease (IBD).

Methods

A human epithelial colorectal adenocarcinoma (Caco2) cell line stably over-expressing NOD2 was produced (Caco2NOD2). ATG16L1, LC3 and NOD2 levels were analysed in the Caco2 cell line and Caco2NOD2 after exposure to AIEC strains, by western blot and immunofluorescence. AIEC survival inside cells and TNFα, IL-8 and IL-1βmRNA expression were analysed by gentamicin protection assay and real time PCR. ATG16L1 and LC3 expression was analyzed in the inflamed ileum and colon of 28 patients with Crohn’s disease (CD), 14 with ulcerative colitis (UC) and 23 controls by western blot.

Results

AIEC infection increased ATG16L1 and LC3 in Caco2 cells. Exposure to AIEC strains increased LC3 and ATG16L1 in Caco2 overexpressing NOD2, more than in Caco2 wild type, while a decrease of AIEC survival rate and cytokine expression was observed in the same cell line. LC3 expression was increased in the inflamed colon of CD and UC children.

Conclusions

The NOD2-mediated autophagy induction is crucial to hold the intramucosal bacterial burden, especially towards AIEC, and to limit the resulting inflammatory response. Autophagy is active in inflamed colonic tissues of IBD pediatric patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. He C, Klionsky DJ. Regulation mechanisms and signaling pathways of autophagy. Annu Rev Genet. 2009;43:67–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Levine B, Kroemer G. Autophagy in the pathogenesis of disease. Cell. 2008;132:27–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Levine B, Mizushima N, Virgin HW. Autophagy in immunity and inflammation. Nature. 2011;469:323–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Műzes G, Tulassay Z, Sipos F. Interplay of autophagy and innate immunity in Crohn’s disease: a key immunobiologic feature. World J Gastroenterol. 2013;19:4447–54.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Shaw MH, Kamada N, Warner N, Kim YG, Nuñez G. The ever-expanding function of NOD2: autophagy, viral recognition and T cell activation. Trends Immunol. 2011;32:73–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Strober W, Watanabe T. NOD2, an intracellular innate immune sensor involved in host defense and Crohn’s disease. Mucosal Immunol. 2011;4:484–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Cooney R, Baker J, Brain O, Danis B, Pichulik T, Allan P, Ferguson DJ, Campbell BJ, Jewell D, Simmons A. NOD2 stimulation induces autophagy in dendritic cells influencing bacterial handling and antigen presentation. Nat Med. 2010;16:90–7.

    Article  CAS  PubMed  Google Scholar 

  8. Homer CR, Richmond AL, Rebert NA, Achkar JP, McDonald C. ATG16L1 and NOD2 interact in an autophagy-dependent antibacterial pathway implicated in Crohn’s disease pathogenesis. Gastroenterology. 2010;139:1630–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Travassos LH, Carneiro LA, Ramjeet M, Hussey S, Kim YG, Magalhães JG, Yuan L, Soares F, Chea E, Le Bourhis L, Boneca IG, Allaoui A, Jones NL, Nuñez G, Girardin SE, Philpott DJ. Nod1 and Nod2 direct autophagy by recruiting ATG16L1 to the plasma membrane at the site of bacterial entry. Nat Immunol. 2010;11:55–62.

    Article  CAS  PubMed  Google Scholar 

  10. Cadwell K. Crohn’s disease susceptibility gene interactions, a NOD to the newcomer ATG16L1. Gastroenterology. 2010;139:1448–50.

    Article  PubMed  Google Scholar 

  11. Abraham C, Cho JH. Inflammatory bowel disease. N Engl J Med. 2009;361:2066–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Abraham C, Medzhitov R. Interactions between the host innate immune system and microbes in inflammatory bowel disease. Gastroenterology. 2011;140:1729–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kaser A, Niederreiter L, Blumberg RS. Genetically determined epithelial dysfunction and its consequences for microflora–host interactions. Cell Mol Life Sci. 2011;68:3643–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Hampe J, Franke A, Rosenstiel P, Till A, Teuber M, Huse K, Albrecht M, Mayr G, De La Vega FM, Briggs J, Günther S, Prescott NJ, Onnie CM, Häsler R, Sipos B, Fölsch UR, Lengauer T, Platzer M, Mathew CG, Krawczak M, Schreiber S. A genome-wide association scan of nonsynonymous SNPs identifies a susceptibility variant for Crohn disease in ATG16L1. Nat Genet. 2007;39:207–11.

    Article  CAS  PubMed  Google Scholar 

  15. Rioux JD, Xavier RJ, Taylor KD, Silverberg MS, Goyette P, Huett A, Green T, Kuballa P, Barmada MM, Datta LW, Shugart YY, Griffiths AM, Targan SR, Ippoliti AF, Bernard EJ, Mei L, Nicolae DL, Regueiro M, Schumm LP, Steinhart AH, Rotter JI, Duerr RH, Cho JH, Daly MJ, Brant SR. Genome-wide association study identifies new susceptibility loci for Crohn disease and implicates autophagy in disease pathogenesis. Nat Genet. 2007;39:596–604.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Salem M, Ammitzboell M, Nys K, Seidelin JB, Nielsen OH, et al. ATG16L1: a multifunctional susceptibility factor in Crohn disease. Autophagy. 2015;11:585–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lu XC, Tao Y, Wu C, Zhao PL, Li K, Zheng JY, Li LX. Association between variants of the autophagy related gene–IRGM and susceptibility to Crohn’s disease and ulcerative colitis: a meta-analysis. PLoS ONE. 2013;8:e80602.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Kabi A, Nickerson KP, Homer CR, McDonald C. Digesting the genetics of inflammatory bowel disease. Insights from studies of autophagy risk genes. Inflamm Bowel Dis. 2012;18:782–92.

    Article  PubMed  Google Scholar 

  19. Frank DN, Robertson CE, Hamm CM, Kpadeh Z, Zhang T, Chen H, Zhu W, Sartor RB, Boedeker EC, Harpaz N, Pace NR, Li E. Disease phenotype and genotype are associated with shifts in intestinal-associated microbiota in inflammatory bowel diseases. Inflamm Bowel Dis. 2011;17:179–84.

    Article  PubMed  Google Scholar 

  20. Willing B, Halfvarson J, Dicksved J, Rosenquist M, Järnerot G, Engstrand L, Tysk C, Jansson JK. Twin studies reveal specific imbalances in the mucosa-associated microbiota of patients with ileal Crohn’s disease. Inflamm Bowel Dis. 2009;15:653–60.

    Article  PubMed  Google Scholar 

  21. Tawfik A, Flanagan PK, Campbell BJ. Escherichia coli-host macrophage interactions in the pathogenesis of inflammatory bowel disease. World J Gastroenterol. 2014;20:8751–63.

    PubMed  PubMed Central  Google Scholar 

  22. Lapaquette P, Glasser AL, Huett A, Xavier RJ, Darfeuille-Michaud A. Crohn disease-associated adherent-invasive E. coli are selectively favoured by impaired autophagy to replicate intracellularly. Cell Microbiol. 2010;12:99–113.

    Article  CAS  PubMed  Google Scholar 

  23. Bringer MA, Glasser AL, Tung CH, Méresse S, Darfeuille-Michaud A. The Crohn’s disease-associated adherent-invasive Escherichia coli strain LF82 replicates in mature phagolysosomes within J774 macrophages. Cell Microbiol. 2006;8:471–84.

    Article  CAS  PubMed  Google Scholar 

  24. Bringer MA, Barnich N, Glasser AL, Bardot O, Darfeuille-Michaud A. HtrA stress protein is involved in intramacrophagic replication of adherent and invasive Escherichia coli strain LF82 isolated from a patient with Crohn’s disease. Infect Immun. 2005;73:712–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Smith EJ, Thompson AP, O’Driscoll A, Clarke DJ. Pathogenesis of adherent-invasive Escherichia coli. Future Microbiol. 2013;8:1289–300.

    Article  CAS  PubMed  Google Scholar 

  26. Darfeuille-Michaud A, Neut C, Barnich N, Lederman E, Di Martino P, Desreumaux P, Gambiez L, Joly B, Cortot A, Colombel JF. Presence of adherent E. coli strains in ileal mucosa of patients with Crohn’s disease. Gastroenterology. 1998;115:1405–13.

    Article  CAS  PubMed  Google Scholar 

  27. Thomazini CM, Samegima DA, Rodrigues MA, Victoria CR, Rodrigues J. High prevalence of aggregative adherent Eschericha coli strains in the mucosa-associated microbiota of patients with inflammatory bowel diseases. Int J Med Microbiol. 2011;301:475–9.

    Article  CAS  PubMed  Google Scholar 

  28. Sepehri S, Khafipour E, Bernstein CN, Coombes BK, Pilar AV, Karmali M, Ziebell K, Krause DO. Characterization of Escherichia coli isolated from gut biopsies of newly diagnosed patients with inflammatory bowel disease. Inflamm Bowel Dis. 2011;17:1451–63.

    Article  PubMed  Google Scholar 

  29. Sadaghian SM, Regeling A, de Goffau MC, Blokzijl T, Weersma RK, Penders J, Faber KN, Harmsen HJ, Dijkstra G. The ATG16L1-T300A allele impairs clearance of pathosymbionts in the inflamed ileal mucosa of Crohn’s disease patients. Gut. 2015;65:1546–52.

    Article  Google Scholar 

  30. Lapaquette P, Bringer MA, Darfeuille-Michaud A. Defects in autophagy favour adherent-invasive E. coli persistence within macrophages leading to increased pro-inflammatory response. Cell Microbiol. 2012;14:791–807.

    Article  CAS  PubMed  Google Scholar 

  31. Levine A, Koletzko S, Turner D, Escher JC, Cucchiara S, de Ridder L, Kolho KL, Veres G, Russell RK, Paerregaard A, Buderus S, Greer ML, Dias VA, Veereman-Wauters G, Lionetti P, Sladek M. Martin de Carpi J, Staiano A, Ruemmele FM, Wilson DC. ESPGHAN revised porto criteria for the diagnosis of inflammatory bowel disease in children and adolescents. J Pediatr Gastroenterol Nutr. 2014;58:795–806.

    CAS  PubMed  Google Scholar 

  32. Hyams JS, Mandel F, Ferry GD, Gryboski JD, Kibort PM, Kirschner BS, Katz AJ, Grand RJ, Boyle JT, et al. Development and validation of a pediatric Crohn’s disease activity index. J Pediatr Gastroenterol Nutr. 1991;12:439–47.

    CAS  PubMed  Google Scholar 

  33. Turner D, Otley AR, Mack D, Hyams J, de Bruijne J, Uusoue K, Walters TD, Zachos M, Mamula P, Beaton DE, Steinhart AH, Griffiths AM. Development, validation, and evaluation of a pediatric ulcerative colitis activity index: a prospective multicenter study. Gastroenterology. 2007;133:423–32.

    Article  PubMed  Google Scholar 

  34. Schmid D, Munoz C. Innate and adaptive immunity through autophagy. Immunity. 2007;27:11–21.

    Article  CAS  PubMed  Google Scholar 

  35. Negroni A, Costanzo M, Vitali R, Superti F, Bertuccini L, Tinari A, Minelli F, Di Nardo G, Nuti F, Pierdomenico M, Cucchiara S, Stronati L. Characterization of adherent-invasive Escherichia coli isolated from pediatric patients with inflammatory bowel disease. Inflamm Bowel Dis. 2012;18:913–24.

    Article  PubMed  Google Scholar 

  36. Stronati L, Negroni A, Merola P, Pannone V, Borrelli O, Cirulli M, Annese V, Cucchiara S. Mucosal NOD2 expression and NF-kappaB activation in pediatric Crohn’s disease. Inflamm Bowel Dis. 2008;14:295–302.

    Article  PubMed  Google Scholar 

  37. Bretin A, Carrière J, Dalmasso G, Bergougnoux A, B’chir W, Maurin AC, Müller S, Seibold F, Barnich N, Bruhat A, Darfeuille-Michaud A, Nguyen HT. Activation of the EIF2AK4-EIF2A/eIF2α-ATF4 pathway triggers autophagy response to Crohn disease-associated adherent-invasive Escherichia coli infection. Autophagy. 2016;12:770–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Palmieri O, Latiano A, Scimeca D, Bossa F, Corritore G, Latiano T, Andriulli A, Annese V. IL23R, ATG16L1, IRGM, OCTN1, and OCTN2 mRNA expression in inflamed and noninflamed mucosa of IBD patients. Inflamm Bowel Dis. 2011;17:1832–3.

    Article  PubMed  Google Scholar 

  39. Nguyen HT, Dalmasso G, Müller S, Carrière J, Seibold F, Darfeuille-Michaud A. Crohn’s disease-associated adherent invasive Escherichia coli modulate levels of microRNAs in intestinal epithelial cells to reduce autophagy. Gastroenterology. 2014;146:508–19.

    Article  CAS  PubMed  Google Scholar 

  40. Sorbara MT, Ellison LK, Ramjeet M, Travassos LH, Jones NL, Girardin SE, Philpott DJ. The protein ATG16L1 suppresses inflammatory cytokines induced by the intracellular sensors Nod1 and Nod2 in an autophagy-independent manner. Immunity. 2013;39:858–73.

    Article  CAS  PubMed  Google Scholar 

  41. Cadwell K, Patel KK, Komatsu M, Virgin HW 4th, Stappenbeck TS. A common role for Atg16L1, Atg5 and Atg7 in small intestinal Paneth cells and Crohn disease. Autophagy. 2009;5:250–2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Cadwell K, Patel KK, Maloney NS, Liu TC, Ng AC, Storer CE, Head RD, Xavier R, Stappenbeck TS, Virgin HW. Virus-plus-susceptibility gene interaction determines Crohn’s disease gene Atg16L1 phenotypes in intestine. Cell. 2010;141:1135–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura Stronati.

Ethics declarations

Conflict of interest

None declared.

Additional information

Responsible Editor: John Di Battista.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Negroni, A., Colantoni, E., Vitali, R. et al. NOD2 induces autophagy to control AIEC bacteria infectiveness in intestinal epithelial cells. Inflamm. Res. 65, 803–813 (2016). https://doi.org/10.1007/s00011-016-0964-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00011-016-0964-8

Keywords

Navigation