Inflammation Research

, Volume 65, Issue 9, pp 737–743 | Cite as

VBP15, a novel dissociative steroid compound, reduces NFκB-induced expression of inflammatory cytokines in vitro and symptoms of murine trinitrobenzene sulfonic acid-induced colitis

  • Jesse M. DamskerEmail author
  • Laurie S. Conklin
  • Soheil Sadri
  • Blythe C. Dillingham
  • Karuna Panchapakesan
  • Christopher R. Heier
  • John M. McCall
  • Anthony D. Sandler
Original Research Paper


Objective and design

The goal of this study was to assess the capacity of VBP15, a dissociative steroidal compound, to reduce pro-inflammatory cytokine expression in vitro, to reduce symptoms of colitis in the trinitrobenzene sulfonic acid-induced murine model, and to assess the effect of VBP15 on growth stunting in juvenile mice.


In vitro studies were performed in primary human intestinal epithelial cells. Colitis was induced in mice by administering trinitrobenzene sulfonic acid. Growth stunting studies were performed in wild type outbred mice.


Cells were treated with VBP15 or prednisolone (10 μM) for 24 h. Mice were subjected to 3 days of VBP15 (30 mg/kg) or prednisolone (30 mg/kg) in the colitis study. In the growth stunting study, mice were subjected to VBP15 (10, 30, 45 mg/kg) or prednisolone (10 mg/kg) for 5 weeks.


Cytokines were measured by PCR and via Luminex. Colitis symptoms were evaluated by assessing weight loss, intestinal blood, and stool consistency. Growth stunting was assessed using an electronic caliper.


VBP15 significantly reduced the in vitro production of CCL5 (p < 0.001) IL-6 (p < 0.001), IL-8 (p < 0.05) and reduced colitis symptoms (p < 0.05). VBP15 caused less growth stunting than prednisolone (p < 0.001) in juvenile mice.


VBP15 may reduce symptoms of IBD, while decreasing or avoiding detrimental side effects.


Inflammation Autoimmunity Glucocorticoids Inflammatory bowel disease 


Compliance with ethical standards

Conflict of interest

Dr. Jesse Damsker and Dr. John McCall are employed by ReveraGen BioPharma Inc. and have stock options and founder shares, respectively.

Financial support

Supported by ReveraGen BioPharma Inc. Sheikh Zayed Institute for Pediatric Surgical Innovation, NIH Grant (1R41DK102235-01).


  1. 1.
    Ponder A, Long MD. A clinical review of recent findings in the epidemiology of inflammatory bowel disease. Clin Epidemiol. 2013;5:237–47.PubMedPubMedCentralGoogle Scholar
  2. 2.
    Rutgeerts PJ. Review article: the limitations of corticosteroid therapy in Crohn’s disease. Aliment Pharmacol Ther. 2001;15:1515–25.CrossRefPubMedGoogle Scholar
  3. 3.
    Moeeni V, Day AS. Impact of inflammatory bowel disease upon growth in children and adolescents. ISRN Pediatr. 2011;2011:365712.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Mrakotsky C, Forbes PW, Bernstein JH, Grand RJ, Bousvaros A, Szigethy E, Waber DP. Acute cognitive and behavioral effects of systemic corticosteroids in children treated for inflammatory bowel disease. J Int Neuropsychol Soc. 2013;19:96–109.CrossRefPubMedGoogle Scholar
  5. 5.
    Faubion W, Loftus EV, Harmsen WS, Zinsmeister AR, Sandborn WJ. The natural history of corticosteroid therapy for inflammatory bowel disease: a population-based study. Gastroenterology. 2001;121:255–60.CrossRefPubMedGoogle Scholar
  6. 6.
    Sandborn WJ, Gasink C, Gao LL, Blank MA, Johanns J, Guzzo C, Sands BE, Hanauer SB, Targan S, Rutgeerts P, Ghosh S, de Villiers WJ, Panaccione R, Greenberg G, Schreiber S, Lichtiger S, Feagan BG. Ustekinumab induction and maintenance therapy in refractory Crohn’s disease. N Engl J Med. 2012;367:1519–28.CrossRefPubMedGoogle Scholar
  7. 7.
    Ratman D, Vanden Berghe W, Dejager L, Libert C, Tavernier J, Beck IM, De Bosscher K. How glucocorticoid receptors modulate the activity of other transcription factors: a scope beyond tethering. Mol Cell Endocrinol. 2013;380:41–54.CrossRefPubMedGoogle Scholar
  8. 8.
    Baudy AR, Saxena N, Gordish H, Hoffman EP, Nagaraju K. A robust in vitro screening assay to identify NF-kappaB inhibitors for inflammatory muscle diseases. Int Immunopharmacol. 2009;9:1209–14.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Truss M, Beato M. Steroid hormone receptors: interaction with deoxyribonucleic acid and transcription factors. Endocr Rev. 1993;14:459–79.PubMedGoogle Scholar
  10. 10.
    van der Burg B, Liden J, Okret S, Delaunay F, Wissink S, van der Saag PT, Gustafsson JA. Nuclear factor-kappa B repression in antiinflammation and immunosuppression by glucocorticoids. Trends Endocrinol Metab. 1997;8:152–7.CrossRefPubMedGoogle Scholar
  11. 11.
    Reichardt HM, Kaestner KH, Tuckermann J, Kretz O, Wessely O, Bock R, Gass P, Schmid W, Herrlich P, Angel P, Schütz G. DNA binding of the glucocorticoid receptor is not essential for survival. Cell. 1998;93:531–41.CrossRefPubMedGoogle Scholar
  12. 12.
    Reichardt HM, Tuckermann JP, Göttlicher M, Vujic M, Weih F, Angel P, Herrlich P, Schütz G. Repression of inflammatory responses in the absence of DNA binding by the glucocorticoid receptor. EMBO J. 2001;20:7168–73.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Atreya I, Atreya R, Neurath MF. NF-kappaB in inflammatory bowel disease. J Intern Med. 2008;263:591–6.CrossRefPubMedGoogle Scholar
  14. 14.
    Neurath MF, Pettersson S. Meyer zum Büschenfelde KH. Local administration of antisense phosphorothioate oligonucleotides to the p65 subunit of NF-kappa B abrogates established experimental colitis in mice. Nat Med. 1996;2:998–1004.CrossRefPubMedGoogle Scholar
  15. 15.
    Tang Y, Clayburgh DR, Mittal N, Goretsky T, Dirisina R, Zhang Z, Kron M, Ivancic D, Katzman RB, Grimm G, Lee G, Fryer J, Nusrat A, Turner JR, Barrett TA. Epithelial NF-kappaB enhances transmucosal fluid movement by altering tight junction protein composition after T cell activation. Am J Pathol. 2010;176:158–67.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Auphan N, DiDonato JA, Rosette C, Helmberg A, Karin M. Immunosuppression by glucocorticoids: inhibition of NF-kappa B activity through induction of I kappa B synthesis. Science. 1995;270:286–90.CrossRefPubMedGoogle Scholar
  17. 17.
    Thiele K, Bierhaus A, Autschbach F, Hofmann M, Stremmel W, Thiele H, Ziegler R, Nawroth PP. Cell specific effects of glucocorticoid treatment on the NF κBp65/IκBα system in patients with Crohn’s disease. Gut. 1999;45:693–704.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    De Bosscher K, Schmitz ML, Vanden Berghe W, Plaisance S, Fiers W. Haegeman. Glucocorticoid-mediated repression of nuclear factor-κB-dependent transcription involves direct interference with transactivation. Proc Natl Acad Sci USA. 1997;94:13504–9.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Reeves EK, Hoffman EP, Nagaraju K, Damsker JM, McCall JM. VBP15: preclinical characterization of a novel anti-inflammatory delta 9,11 steroid. Bioorg Med Chem. 2013;21:2241–9.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Damsker JM, Dillingham BC, Rose MC, Balsley MA, Heier CR, Watson AM, Stemmy EJ, Jurjus RA, Huynh T, Tatem K, Uaesoontrachoon K, Berry DM, Benton AS, Freishtat RJ, Hoffman EP, McCall JM, Gordish-Dressman H, Constant SL, Reeves EK, Nagaraju K. VBP15, a glucocorticoid analogue, is effective at reducing allergic lung inflammation in mice. PLoS One. 2013;8:e63871.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Heier CR, Damsker JM, Yu Q, Dillingham BC, Huynh T, Van der Meulen JH, Sali A, Miller BK, Phadke A, Scheffer L, Quinn J, Tatem K, Jordan S, Dadgar S, Rodriguez OC, Albanese C, Calhoun M, Gordish-Dressman H, Jaiswal JK, Connor EM, McCall JM, Hoffman EP, Reeves EK, Nagaraju K. VBP15, a novel anti-inflammatory and membrane-stabilizer, improves muscular dystrophy without side effects. EMBO Mol Med. 2013;5:1569–85.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Dillingham BC, Knoblach SM, Many GM, Harmon BT, Mullen AM, Heier CR, Bello L, McCall JM, Hoffman EP, Connor EM, Nagaraju K, Reeves EK, Damsker JM. VBP15, a novel anti-inflammatory, is effective at reducing the severity of murine experimental autoimmune encephalomyelitis. Cell Mol Neurobiol. 2015;35:377–87.CrossRefPubMedGoogle Scholar
  23. 23.
    Reuter KC, Grunwitz CR, Kaminski BM, Steinhilber D, Radeke HH, Stein J. Selective glucocorticoid receptor agonists for the treatment of inflammatory bowel disease: studies in mice with acute trinitrobenzene sulfonic acid colitis. J Pharmacol Exp Ther. 2012;341:68–80.CrossRefPubMedGoogle Scholar
  24. 24.
    Scheiffele F, Fuss IV. Induction of TNBS colitis in mice. Curr Protoc Immunol. 2002;Chapter 15:Unit 15.19. doi: 10.1002/0471142735.im1519s49.
  25. 25.
    Kuhn KA, Manieri NA, Liu TC, Stappenbeck TS. IL-6 stimulates intestinal epithelial proliferation and repair after injury. PLoS One. 2014;9(12):e114195.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Kucharzik T, Hudson JT 3rd, Lügering A, Abbas JA, Bettini M, Lake JG, Evans ME, Ziegler TR, Merlin D, Madara JL, Williams IR. Acute induction of human IL-8 production by intestinal epithelium triggers neutrophil infiltration without mucosal injury. Gut. 2005;54(11):1565–72.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Yang SK, Choi MS, Kim OH, Myung SJ, Jung HY, Hong WS, Kim JH, Min YI. The increased expression of an array of C-X-C and C-C chemokines in the colonic mucosa of patients with ulcerative colitis: regulation by corticosteroids. Am J Gastroenterol. 2002;97(1):126–32.CrossRefPubMedGoogle Scholar
  28. 28.
    Lillard JW Jr, Boyaka PN, Taub DD, McGhee JR. RANTES potentiates antigen-specific mucosal immune responses. J Immunol. 2001;166(1):162–9.CrossRefPubMedGoogle Scholar
  29. 29.
    McCormack G, Moriarty D, O’Donoghue DP, McCormick PA, Sheahan K, Baird AW. Tissue cytokine and chemokine expression in inflammatory bowel disease. Inflamm Res. 2001;50:491–5.CrossRefPubMedGoogle Scholar
  30. 30.
    Kunsch C, Rosen CA. NF-kappa B subunit-specific regulation of the interleukin-8 promoter. Mol Cell Biol. 1993;13:6137–46.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Libermann TA, Baltimore D. Activation of interleukin-6 gene expression through the NF-kappa B transcription factor. Mol Cell Biol. 1990;10:2327–34.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    DeBosscher KG, Haegeman G, Elewaut D. Targeting inflammation using selective glucocorticoid receptor modulators. Curr Opin Pharmacol. 2010;10:497–504.CrossRefGoogle Scholar
  33. 33.
    Adcock IM, Barnes PJ. Ligand-induced differentiation of glucocorticoid receptor (GR) transrepression and transactivation. Biochem Soc Trans. 1996;24:267S.CrossRefPubMedGoogle Scholar
  34. 34.
    Bijsmans IT, Guercini C, Ramos Pittol JM, Omta W, Milona A, Lelieveld D, Egan DA, Pellicciari R, Gioiello A, van Mil SW. The glucocorticoid mometasone furoate is a novel FXR ligand that decreases inflammatory but not metabolic gene expression. Sci Rep. 2015;5:14086.Google Scholar
  35. 35.
    Robertson S, Allie-Reid F, Vanden Berghe W, Visser K, Binder A, Africander D, Vismer M, De Bosscher K, Hapgood J, Haegeman G, Louw A. Abrogration of glucocorticoid receptor dimerization correlates with dissociated glucocorticoid behavior of compound a. J Biol Chem. 2010;12:8061–8075.Google Scholar

Copyright information

© Springer International Publishing 2016

Authors and Affiliations

  • Jesse M. Damsker
    • 1
    Email author
  • Laurie S. Conklin
    • 2
    • 3
  • Soheil Sadri
    • 2
    • 3
  • Blythe C. Dillingham
    • 4
  • Karuna Panchapakesan
    • 4
  • Christopher R. Heier
    • 4
  • John M. McCall
    • 1
    • 5
  • Anthony D. Sandler
    • 2
    • 3
  1. 1.ReveraGen BioPharma Inc.RockvilleUSA
  2. 2.The Joseph E. Robert Center for Surgical CareChildren’s National Health SystemWashington, DCUSA
  3. 3.The Sheikh Zayed Institute for Pediatric Surgical InnovationChildren’s National Health SystemWashington, DCUSA
  4. 4.Research Center for Genetic MedicineChildren’s National Health SystemWashington, DCUSA
  5. 5.PharMac LLCBoca GrandeUSA

Personalised recommendations