Advertisement

Inflammation Research

, Volume 65, Issue 7, pp 521–532 | Cite as

CD200Fc reduces TLR4-mediated inflammatory responses in LPS-induced rat primary microglial cells via inhibition of the NF-κB pathway

  • Li Jiang
  • Fan Xu
  • Wenjing He
  • Lifei Chen
  • Haibin Zhong
  • Yu Wu
  • Siming ZengEmail author
  • Li Li
  • Min LiEmail author
Original Research Paper

Abstract

Objective

Based on recent information, CD200Fc, a CD200R1 agonist, could attenuate the inflammatory response of microglial cells in autoimmune diseases and neuro-degeneration. However, the exact molecular mechanisms responsible for the anti-inflammatory activity of CD200Fc in microglial cells have not been elucidated. In the present study, we investigated the anti-inflammatory effects and the molecular mechanisms of CD200Fc in lipopolysaccharide (LPS)-stimulated rat primary microglial cells.

Methods

The cell viability was measured by MTT assay. The LPS-induced cytokines release (IL-1β, IL-6, TNF-α, iNOS, MCP-1, and COX-2) was monitored by ELISA or real-time PCR, while NF-κB-related signals (MyD88, p-TAK1, TRIF, p-TBK1, p-IRF3, p-IκB, and NF-κB-P65) were assessed by real-time PCR, western blot and/or Immunofluorescent staining.

Results

CD200Fc and/or LPS exerted no significant cytotoxicity on microglial cells. LPS reduced the CD200R1 expression in microglial cells, and this effect was attenuated by CD200Fc. In addition, CD200Fc inhibited LPS-induced expression of TLR4 and its adapter molecules (MyD88 and p-TAK1, TRIF, p-TBK1, and p-IRF3), and abolished its interactions with MyD88, TAK1, and TRIF in microglial cells. CD200Fc also attenuated LPS-induced protein expression of p-IκB and NF-κB-P65 translocation to nucleus in microglial cells. Moreover, CD200Fc suppressed the LPS-induced release of inflammatory mediators in microglial cells, including IL-1β, IL-6, TNF-α, iNOS, MCP-1, and COX-2.

Conclusion

These results indicated that CD200Fc displayed an anti-inflammatory effect in LPS-induced microglial cells by blocking TLR4-mediated NF-κB activation.

Keywords

CD200Fc Inflammatory responses Microglial cells TLR4 NF-κB 

Notes

Acknowledgments

This study was supported by the National Natural Science Foundation of China (No. 81460087 and No. 81560166), the Natural Science Foundation of Guangxi Zhuang Autonomous Region (No. 2012GXNSFAA276039 and No. 2011GXNSFA018228), and the Science Fund Project of People’s Hospital of Guangxi Zhuang Autonomous Region (No. qn2014-1 and qn2014-2).

Compliance with ethical standards

Conflict of interest

All authors declare that they have no conflict of interest.

References

  1. 1.
    Ahmad S, Elsherbiny NM, Bhatia K, Elsherbini AM, Fulzele S, Liou GI. Inhibition of adenosine kinase attenuates inflammation and neurotoxicity in traumatic optic neuropathy. J Neuroimmunol. 2014;277:96–104.CrossRefPubMedGoogle Scholar
  2. 2.
    Maneu V, Noailles A, Megias J, Gomez-Vicente V, Carpena N, Gil ML, et al. Retinal microglia are activated by systemic fungal infection. Invest Ophthalmol Vis Sci. 2014;55:3578–85.CrossRefPubMedGoogle Scholar
  3. 3.
    Rana T, Shinde VM, Starr CR, Kruglov AA, Boitet ER, Kotla P, et al. An activated unfolded protein response promotes retinal degeneration and triggers an inflammatory response in the mouse retina. Cell Death Dis. 2014;5:e1578.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Sierra A, Navascues J, Cuadros MA, Calvente R, Martin-Oliva D, Ferrer-Martin RM, et al. Expression of inducible nitric oxide synthase (iNOS) in microglia of the developing quail retina. PLoS One. 2014;9:e106048.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Zhao J, Ha Y, Liou GI, Gonsalvez GB, Smith SB, Bollinger KE. Sigma receptor ligand, (+)-pentazocine, suppresses inflammatory responses of retinal microglia. Invest Ophthalmol Vis Sci. 2014;55:3375–84.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Aslanidis A, Karlstetter M, Scholz R, Fauser S, Neumann H, Fried C, et al. Activated microglia/macrophage whey acidic protein (AMWAP) inhibits NFkappaB signaling and induces a neuroprotective phenotype in microglia. J neuroinflamm. 2015;12:77.CrossRefGoogle Scholar
  7. 7.
    Yu Z, Tang L, Chen L, Li J, Wu W, Hu C. Capillarisin suppresses lipopolysaccharide-induced inflammatory mediators in BV2 microglial cells by suppressing TLR4-mediated NF-kappaB and MAPKs signaling pathway. Neurochem Res. 2015;40:1095–101.CrossRefPubMedGoogle Scholar
  8. 8.
    Dai XJ, Li N, Yu L, Chen ZY, Hua R, Qin X, et al. Activation of BV2 microglia by lipopolysaccharide triggers an inflammatory reaction in PC12 cell apoptosis through a toll-like receptor 4-dependent pathway. Cell stress chaperones. 2015;20:321–31.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Hernangomez M, Mestre L, Correa FG, Loria F, Mecha M, Inigo PM, et al. CD200-CD200R1 interaction contributes to neuroprotective effects of anandamide on experimentally induced inflammation. Glia. 2012;60:1437–50.CrossRefPubMedGoogle Scholar
  10. 10.
    Masocha W. Systemic lipopolysaccharide (LPS)-induced microglial activation results in different temporal reduction of CD200 and CD200 receptor gene expression in the brain. J Neuroimmunol. 2009;214:78–82.CrossRefPubMedGoogle Scholar
  11. 11.
    Costello DA, Lyons A, Denieffe S, Browne TC, Cox FF, Lynch MA. Long term potentiation is impaired in membrane glycoprotein CD200-deficient mice: a role for Toll-like receptor activation. J Biol Chem. 2011;286:34722–32.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Cox FF, Carney D, Miller AM, Lynch MA. CD200 fusion protein decreases microglial activation in the hippocampus of aged rats. Brain Behav Immun. 2012;26:789–96.CrossRefPubMedGoogle Scholar
  13. 13.
    Ding Y, Yang H, Xiang W, He X, Liao W, Yi Z. CD200R1 agonist attenuates LPS-induced inflammatory response in human renal proximal tubular epithelial cells by regulating TLR4-MyD88-TAK1-mediated NF-kappaB and MAPK pathway. Biochem Biophys Res Commun. 2015;460:287–94.CrossRefPubMedGoogle Scholar
  14. 14.
    Roque RS, Caldwell RB. Isolation and culture of retinal microglia. Curr Eye Res. 1993;12:285–90.CrossRefPubMedGoogle Scholar
  15. 15.
    Dong N, Li X, Xiao L, Yu W, Wang B, Chu L. Upregulation of retinal neuronal MCP-1 in the rodent model of diabetic retinopathy and its function in vitro. Invest Ophthalmol Vis Sci. 2012;53:7567–75.CrossRefPubMedGoogle Scholar
  16. 16.
    Fitzgerald KA, Palsson-McDermott EM, Bowie AG, Jefferies CA, Mansell AS, Brady G, et al. Mal (MyD88-adapter-like) is required for Toll-like receptor-4 signal transduction. Nature. 2001;413:78–83.CrossRefPubMedGoogle Scholar
  17. 17.
    Ren X, Lv F, Fang B, Liu S, Lv H, He G, et al. Anesthetic agent propofol inhibits myeloid differentiation factor 88-dependent and independent signaling and mitigates lipopolysaccharide-mediated reactive oxygen species production in human neutrophils in vitro. Eur J Pharmacol. 2014;744:164–72.CrossRefPubMedGoogle Scholar
  18. 18.
    Hayden MS, Ghosh S. Shared principles in NF-kappaB signaling. Cell. 2008;132:344–62.CrossRefPubMedGoogle Scholar
  19. 19.
    Xiang HF, Cao DH, Yang YQ, Wang HQ, Zhu LJ, Ruan BH, et al. Isoflurane protects against injury caused by deprivation of oxygen and glucose in microglia through regulation of the Toll-like receptor 4 pathway. J Mol Neurosci. 2014;54:664–70.CrossRefPubMedGoogle Scholar
  20. 20.
    Walker DG, Dalsing-Hernandez JE, Campbell NA, Lue LF. Decreased expression of CD200 and CD200 receptor in Alzheimer’s disease: a potential mechanism leading to chronic inflammation. Exp Neurol. 2009;215:5–19.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Koning N, Bo L, Hoek RM, Huitinga I. Downregulation of macrophage inhibitory molecules in multiple sclerosis lesions. Annals Neurol. 2007;62:504–14.CrossRefGoogle Scholar
  22. 22.
    Koning N, Swaab DF, Hoek RM, Huitinga I. Distribution of the immune inhibitory molecules CD200 and CD200R in the normal central nervous system and multiple sclerosis lesions suggests neuron-glia and glia-glia interactions. J Neuropathol Exp Neurol. 2009;68:159–67.CrossRefPubMedGoogle Scholar
  23. 23.
    Frank MG, Barrientos RM, Biedenkapp JC, Rudy JW, Watkins LR, Maier SF. mRNA up-regulation of MHC II and pivotal pro-inflammatory genes in normal brain aging. Neurobiol Aging. 2006;27:717–22.CrossRefPubMedGoogle Scholar
  24. 24.
    Taylor S, Calder CJ, Albon J, Erichsen JT, Boulton ME, Morgan JE. Involvement of the CD200 receptor complex in microglia activation in experimental glaucoma. Exp Eye Res. 2011;92:338–43.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Copland DA, Calder CJ, Raveney BJ, Nicholson LB, Phillips J, Cherwinski H, et al. Monoclonal antibody-mediated CD200 receptor signaling suppresses macrophage activation and tissue damage in experimental autoimmune uveoretinitis. Am J Pathol. 2007;171:580–8.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Broderick C, Hoek RM, Forrester JV, Liversidge J, Sedgwick JD, Dick AD. Constitutive retinal CD200 expression regulates resident microglia and activation state of inflammatory cells during experimental autoimmune uveoretinitis. Am J Pathol. 2002;161:1669–77.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Guo K, Mou X, Huang J, Xiong N, Li H. Trans-caryophyllene suppresses hypoxia-induced neuroinflammatory responses by inhibiting NF-kappaB activation in microglia. J Mol Neurosci. 2014;54:41–8.CrossRefPubMedGoogle Scholar
  28. 28.
    Gong G, Bai S, Wu W, Hu L, Liu Y, Niu J, et al. Lrg participates in lipopolysaccharide preconditioning-induced brain ischemia injury via TLR4 signaling pathway. J Mol Neurosci. 2014;54:20–6.CrossRefPubMedGoogle Scholar
  29. 29.
    Plociennikowska A, Hromada-Judycka A, Borzecka K, Kwiatkowska K. Co-operation of TLR4 and raft proteins in LPS-induced pro-inflammatory signaling. Cell Mol Life Sci. 2015;72:557–81.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Bryant CE, Symmons M, Gay NJ. Toll-like receptor signalling through macromolecular protein complexes. Mol Immunol. 2015;63:162–5.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing 2016

Authors and Affiliations

  1. 1.Department of OphthalmologyPeople’s Hospital of Guangxi Zhuang Autonomous RegionNanningPeople’s Republic of China

Personalised recommendations