Inflammation Research

, Volume 65, Issue 2, pp 133–142 | Cite as

Characterization of changes in plasma and tissue oxylipin levels in LPS and CLP induced murine sepsis

  • Ina Willenberg
  • Katharina Rund
  • Song Rong
  • Nelli Shushakova
  • Faikah Gueler
  • Nils Helge Schebb
Original Research Paper

Abstract

Objective

The present study aimed to comprehensively investigate the changes in oxylipins during murine sepsis induced by lipopolysaccharide (LPS) or cecal ligation and puncture (CLP).

Methods

Twenty-four hours after induction of sepsis in male C57BL/6 mice by LPS or CLP, plasma and liver, lung, kidney and heart tissues were sampled. Oxylipin levels in plasma and tissue were quantified by means of LC–MS. Moreover, clinical chemistry parameters were determined in plasma and interleukin levels (MCP-1 and IL-6) were determined in kidney and liver.

Results

Elevation of liver function plasma parameters at 24 h revealed that both models were successful in the induction of sepsis. LPS induced sepsis resulted in a dramatic increase of plasma PGE2 (2,100 % change in comparison to control) and other cyclooxygenase metabolites, whereas this effect was less pronounced in CLP induced sepsis (97 % increase of PGE2). Plasma epoxy-fatty acids (FAs) and hydroxy-FAs and most of the dihydroxy-FAs were elevated in both models of sepsis. Changes of tissue oxylipin concentrations were organ dependent. Only few changes were detected in the lung and liver tissue, epoxy-FAs were elevated in the kidney. In the heart tissue a trend towards lower levels of hydroxy-FAs and epoxy-FAs was observed.

Conclusion

Both murine models of sepsis are characterized by changes of oxylipins formed in all branches of the arachidonic acid (AA) cascade. The more pronounced effects in the LPS model make this model more suitable for the investigation of the AA cascade and its pharmacological modulation in sepsis.

Keywords

Sepsis Lipopolysaccharide (LPS) Cecal ligation and puncture Lipid mediators 

Supplementary material

11_2015_897_MOESM1_ESM.pdf (426 kb)
Supplementary Information (PDF 426 kb)

References

  1. 1.
    Angus DC, van der Poll T. Severe sepsis and septic shock. N Engl J Med. 2013;369:840–51.PubMedCrossRefGoogle Scholar
  2. 2.
    Annane D, Aegerter P, Jars-Guincestre MC, Guidet B. Current epidemiology of septic shock. Am J Respir Crit Care Med. 2003;168:165–72.PubMedCrossRefGoogle Scholar
  3. 3.
    Martin GS. Sepsis, severe sepsis and septic shock: changes in incidence, pathogens and outcomes. Exp Rev Anti Infect Ther. 2012;10:701–6.CrossRefGoogle Scholar
  4. 4.
    Buras JA, Holzmann B, Sitkovsky M. Animal models of sepsis: setting the stage. Nat Rev Drug Discov. 2005;4:854–65.PubMedCrossRefGoogle Scholar
  5. 5.
    Cohen J. The immunopathogenesis of sepsis. Nature. 2002;420:885–91.PubMedCrossRefGoogle Scholar
  6. 6.
    Ertel W, Morrison MH, Wang P, Ba ZF, Ayala A, Chaudry IH. The complex pattern of cytokines in sepsis. Association between prostaglandins, cachectin, and interleukins. Ann Surg. 1991;214:141–8.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Liu J-Y, Tsai H-J, Hwang SH, Jones PD, Morisseau C, Hammock BD. Pharmacokinetic optimization of four soluble epoxide hydrolase inhibitors for use in a murine model of inflammation. Br J Pharmacol. 2009;156:284–96.PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Schmelzer KR, Kubala L, Newman JW, Kim I-H, Eiserich JP, Hammock BD. Soluble epoxide hydrolase is a therapeutic target for acute inflammation. Proc Natl Acad Sci. 2005;102:9772–7.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Uozumi N, Kita Y, Shimizu T. Modulation of lipid and protein mediators of inflammation by cytosolic phospholipase a2alpha during experimental sepsis. J Immunol. 2008;181:3558–66.PubMedCrossRefGoogle Scholar
  10. 10.
    Halushka PV, Reines HD, Barrow SE, Blair IA, Dollery CT, Rambo W, et al. Elevated plasma 6-keto-prostaglandin F1[alpha] in patients in septic shock. Crit Care Med. 1985;13:451–3.PubMedCrossRefGoogle Scholar
  11. 11.
    Reines HD, Cook JA, Halushka PV, Wise WC, Rambo W. Plasma thromboxane concentrations are raised in patients dying with septic shock. Lancet. 1982;320:174–5.CrossRefGoogle Scholar
  12. 12.
    Smyth EM, Grosser T, Wang M, Yu Y, FitzGerald GA. Prostanoids in health and disease. J Lipid Res. 2009;50:S423–8.PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Ricciotti E, Fitzgerald GA. Prostaglandins and Inflammation. Arterioscler Thromb Vasc Biol. 2011;31:986–1000.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Basu S. Novel cyclooxygenase-catalyzed bioactive prostaglandin F2α from physiology to new principles in inflammation. Med Res Rev. 2007;27:435–68.PubMedCrossRefGoogle Scholar
  15. 15.
    Samuelsson B, Goldyne M, Granstrom E, Hamberg M, Hammarstrom S, Malmsten C. Prostaglandins and thromboxanes. Annu Rev Biochem. 1978;47:997–1029.PubMedCrossRefGoogle Scholar
  16. 16.
    Imig JD. Epoxides and soluble epoxide hydrolase in cardiovascular physiology. Physiol Rev. 2012;92:101–30.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Morisseau C, Inceoglu B, Schmelzer K, Tsai HJ, Jinks SL, Hegedus CM, et al. Naturally occurring monoepoxides of eicosapentaenoic acid and docosahexaenoic acid are bioactive antihyperalgesic lipids. J Lipid Res. 2010;51:3481–90.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Kroetz DL, Xu F. Regulation and inhibition of arachidonic acid omega-hydroxylases and 20-HETE formation. Annu Rev Pharmacol Toxicol. 2005;45:413–38.PubMedCrossRefGoogle Scholar
  19. 19.
    Haeggström JZ, Funk CD. Lipoxygenase and leukotriene pathways: biochemistry, biology, and roles in disease. Chem Rev. 2011;111:5866–98.PubMedCrossRefGoogle Scholar
  20. 20.
    Serhan CN, Petasis NA. Resolvins and protectins in inflammation resolution. Chem Rev. 2011;111:5922–43.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Yin H, Brooks JD, Gao L, Porter NA, Morrow JD. Identification of novel autoxidation products of the omega-3 fatty acid eicosapentaenoic acid in vitro and in vivo. J Biol Chem. 2007;282:29890–901.PubMedCrossRefGoogle Scholar
  22. 22.
    Milne GL, Musiek ES, Morrow JD. F2-isoprostanes as markers of oxidative stress in vivo: an overview. Biomarkers. 2005;10:10–23.CrossRefGoogle Scholar
  23. 23.
    Liu J-Y, Lin Y-P, Qiu H, Morisseau C, Rose TE, Hwang SH, et al. Substituted phenyl groups improve the pharmacokinetic profile and anti-inflammatory effect of urea-based soluble epoxide hydrolase inhibitors in murine models. Eur J Pharm Sci. 2013;48:619–27.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Meirer K, Steinhilber D, Proschak E. Inhibitors of the arachidonic acid cascade: interfering with multiple pathways. Basic Clin Pharmacol Toxicol. 2013;114:83–91.PubMedCrossRefGoogle Scholar
  25. 25.
    Peri KG, Varma DR, Chemtob S. Stimulation of prostaglandin G/H synthase-2 expression by arachidonic acid monooxygenase product, 14,15-epoxyeicosatrienoic acid. FEBS Lett. 1997;416:269–72.PubMedCrossRefGoogle Scholar
  26. 26.
    Dejager L, Pinheiro I, Dejonckheere E, Libert C. Cecal ligation and puncture: the gold standard model for polymicrobial sepsis? Trends Microbiol. 2011;19:198–208.PubMedCrossRefGoogle Scholar
  27. 27.
    Schabbauer G. Polymicrobial sepsis models: CLP versus CASP. Drug Discov Today. 2012;9:e17–21.Google Scholar
  28. 28.
    Kümpers P, Gueler F, David S, Slyke PV, Dumont DJ, Park JK, et al. The synthetic tie2 agonist peptide vasculotide protects against vascular leakage and reduces mortality in murine abdominal sepsis. Crit Care. 2011;15:R261.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Ostermann AI, Willenberg I, Schebb NH. Comparison of sample preparation methods for the quantitative analysis of eicosanoids and other oxylipins in plasma by means of LC–MS/MS. Anal Bioanal Chem. 2015;407:1403–14.PubMedCrossRefGoogle Scholar
  30. 30.
    Willenberg I, Ostermann AI, Giovannini S, Kershaw O, von Keutz A, Steinberg P, et al. Effect of acute and chronic DSS induced colitis on plasma eicosanoid and oxylipin levels in the rat. Prostaglandins Other Lipid Mediat 2015; 120:155–160.Google Scholar
  31. 31.
    Zarjou A, Agarwal A. Sepsis and acute kidney injury. J Am Soc Nephrol. 2011;22:999–1006.PubMedCrossRefGoogle Scholar
  32. 32.
    Hosten AO. BUN and creatinine. In: Walker HK, Hall WD, Hurst JW, editors. Clinical methods: the history, physical, and laboratory examinations. Boston: Butterworths; 1990.Google Scholar
  33. 33.
    Doi K, Leelahavanichkul A, Yuen PS, Star RA. Animal models of sepsis and sepsis-induced kidney injury. J Clin Investig. 2009;119:2868–78.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Rittirsch D, Huber-Lang MS, Flierl MA, Ward PA. Immunodesign of experimental sepsis by cecal ligation and puncture. Nat Protoc. 2009;4:31–6.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Remick DG, Newcomb DE, Bolgos GL, Call DR. Comparison of the mortality and inflammatory response of two models of sepsis: lipopolysaccharide vs. cecal ligation and puncture. Shock. 2000;13:110–6.PubMedCrossRefGoogle Scholar
  36. 36.
    Tiwari MM, Brock RW, Megyesi JK, Kaushal GP, Mayeux PR. Disruption of renal peritubular blood flow in lipopolysaccharide-induced renal failure: role of nitric oxide and caspases. Am J Physiol Renal Physiol. 2005;289:F1324–32.PubMedCrossRefGoogle Scholar
  37. 37.
    Deitch EA. Animal models of sepsis and shock: a review and lessons learned. Shock. 1998;9:1–11.PubMedCrossRefGoogle Scholar
  38. 38.
    Bitto A, Minutoli L, David A, Irrera N, Rinaldi M, Venuti F, et al. Flavocoxid, a dual inhibitor of COX-2 and 5-LOX of natural origin, attenuates the inflammatory response and protects mice from sepsis. Crit Care. 2012;16:R32.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Spite M, Norling LV, Summers L, Yang R, Cooper D, Petasis NA, et al. Resolvin D2 is a potent regulator of leukocytes and controls microbial sepsis. Nature. 2009;461:1287–91.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Hamaguchi K, Kuwata H, Yoshihara K, Masuda S, Shimbara S, Oh-ishi S, et al. Induction of distinct sets of secretory phospholipase A2 in rodents during inflammation. Biochim Biophys Acta. 2003;1635:37–47.PubMedCrossRefGoogle Scholar
  41. 41.
    Cunningham FM, Wollard PM. 12(R)-hydroxy-5,8,10,14-eicosatetraenoic acid is a chemoattractant for human polymorphonuclear leucocytes in vitro. Prostaglandins. 1987;34:71–8.PubMedCrossRefGoogle Scholar
  42. 42.
    Wiggings RE, Jafri MS, Proia AD. 12(S)-hydroxy-5,8,10,14-eicosatetraenoic acid is a more potent neutrophil chemoattractant than the 12(R) epimer in the rat cornea. Prostaglandins. 1990;40:131–41.CrossRefGoogle Scholar
  43. 43.
    Rossaint J, Nadler J, Ley K, Zarbock A. Eliminating or blocking 12/15-lipoxygenase reduces neutrophil recruitment in mouse models of acute lung injury. Crit Care. 2012;16:1–15.CrossRefGoogle Scholar
  44. 44.
    Craciun FL, Schuller ER, Remick DG. Early enhanced local neutrophil recruitment in peritonitis-induced sepsis improves bacterial clearance and survival. J Immunol. 2010;185:6930–8.PubMedCrossRefGoogle Scholar
  45. 45.
    Roman RJ. P-450 metabolites of arachidonic acid in the control of cardiovascular function. Physiol Rev. 2002;82:131–85.PubMedCrossRefGoogle Scholar
  46. 46.
    Zou AP, Fleming JT, Falck JR, Jacobs ER, Gebremedhin D, Harder DR, et al. 20-HETE is an endogenous inhibitor of the large-conductance Ca(2 +)-activated K + channel in renal arterioles. Am J Physiol. 1996;270:R228–37.PubMedGoogle Scholar
  47. 47.
    Theken KN, Deng Y, Kannon MA, Miller TM, Poloyac SM, Lee CR. Activation of the acute inflammatory response alters cytochrome P450 expression and eicosanoid metabolism. Drug Metab Dispos Biol Fate Chem. 2011;39:22–9.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Kubala L, Schmelzer KR, Klinke A, Kolarova H, Baldus S, Hammock BD, et al. Modulation of arachidonic and linoleic acid metabolites in myeloperoxidase-deficient mice during acute inflammation. Free Radic Biol Med. 2010;48:1311–20.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Morisseau C, Hammock BD. Impact of soluble epoxide hydrolase and epoxyeicosanoids on human health. Annu Rev Pharmacol Toxicol. 2013;53:37–58.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Sprecher H, VanRollins M, Sun F, Wyche A, Needleman P. Dihomo-prostaglandins and -thromboxane. A prostaglandin family from adrenic acid that may be preferentially synthesized in the kidney. J Biol Chem. 1982;257:3912–8.PubMedGoogle Scholar

Copyright information

© Springer International Publishing 2015

Authors and Affiliations

  • Ina Willenberg
    • 1
  • Katharina Rund
    • 1
  • Song Rong
    • 2
    • 3
  • Nelli Shushakova
    • 2
    • 4
  • Faikah Gueler
    • 2
    • 4
  • Nils Helge Schebb
    • 1
    • 5
  1. 1.Institute for Food Toxicology and Analytical ChemistryUniversity of Veterinary Medicine Hannover30173Germany
  2. 2.Department of NephrologyHannover Medical SchoolHannoverGermany
  3. 3.The Transplantation Center of the Affiliated HospitalZunyi Medical CollegeZunyiChina
  4. 4.Phenos GmbHHannoverGermany
  5. 5.Institute of Food ChemistryUniversity of WuppertalWuppertalGermany

Personalised recommendations