Inflammation Research

, Volume 65, Issue 1, pp 1–11 | Cite as

Macrophage polarization: the link between inflammation and related diseases

  • Samina Bashir
  • Yadhu Sharma
  • Asif Elahi
  • Farah KhanEmail author



In the present review, we try to critically evaluate the two faces of the macrophages and their roles in relation to gene alteration in some inflammatory conditions. The pros- and cons of each type of macrophage in immunologic outcomes are discussed.


If “Diversity is the rule of nature”, macrophages have proven to be its obedient followers. A cell type that was classically considered to be activated by Interferon-γ, under the influence of TH-1 type of response and a well-accepted warrior of cellular immunity to the intracellular pathogens is not as simple as once considered. Past decade has revolutionized this notion with the advent of TH-2 influenced alternatively activated macrophages, now established as wound repairing and tissue regenerating.


Literature survey was done to present a detailed study on this macrophage dichotomy and its relevance to immune disorders via expression of some critical genes, nuclear factor kappa-light-chain-enhancer of activated B cells, peroxisome proliferator-activated receptors and SH2-containing inositol-5′-phosphatase 1, highly implicated in a myriad of immunological emergencies like inflammation, insulin resistance, wound healing, cancer, etc.


The evaluation of macrophage dichotomy in these disorders may prove to be the first step towards the formulation of innovative therapeutic approaches.


Cytokines Inflammation Insulin resistance Macrophage polarization Obesity Tumour 


  1. 1.
    Hume DA, Ross IL, Himes SR, Sasmono RT, Wells CA, Ravasi T. The mononuclear phagocyte system revisited. J Leukoc Biol. 2002;72:621–7.PubMedGoogle Scholar
  2. 2.
    Yona S, Kim K-W, Wolf Y, et al. Fate mapping reveals origins and dynamics of monocytes and tissue macrophages under homeostasis. Immunity. 2013;38:79–91.PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Lefe`vr L, Gale`s A, Olagnier D, et al. PPARγ Ligands switched High Fat Diet-Induced Macrophage M2b polarization toward M2a Thereby Improving Intestinal Candida Elimination. PLoS ONE. 2010;9:e12828.CrossRefGoogle Scholar
  4. 4.
    Fujisaka S, Usui I, Bukhari A, et al. Regulatory mechanisms for adipose tissue M1 and M2 macrophages in diet-induced obese mice. Diabetes. 2009;58:2574–82.PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Lumeng CN, Bodzin JL, Saltiel AR. Obesity induces a phenotypic switch in adipose tissue macrophage polarization. J Clin Invest. 2007;117:175–84.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Chakkalath HR, Titus RG. Leishmania major-parasitized macrophages augment Th2-type T cell activation. J. Immunol. 1994;153:4378.PubMedGoogle Scholar
  7. 7.
    Andrew DC, Emma LB, John AH. The phenotype of inflammatory macrophages is stimulus dependent: implications for the nature of the inflammatory response. J Immunol. 2003;171:4816–23.CrossRefGoogle Scholar
  8. 8.
    Gordon S, Taylor PR. Monocyte and macrophage heterogeneity. Nat Rev Immunol. 2005;5:953–64.PubMedCrossRefGoogle Scholar
  9. 9.
    Gordon S. Alternative activation of macrophages. Nat Rev Immunol. 2003;3:23–35.PubMedCrossRefGoogle Scholar
  10. 10.
    Fernando M, Helming L, Gordon S. Alternative activation of macrophages: an immunologic functional perspective. Annu Rev Immunol. 2009;27:451–83.CrossRefGoogle Scholar
  11. 11.
    Mantovani A, Sozzani S, Locati M, et al. Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol. 2002;23:549–55.PubMedCrossRefGoogle Scholar
  12. 12.
    Fernando M, Gordon S. The M1 and M2 paradigm of macrophage activation: time for reassessment. F1000prime Rep. 2014;6:13.Google Scholar
  13. 13.
    Mantovani A, Sica A, Sozzani S, et al. The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol. 2004;25:677–86.PubMedCrossRefGoogle Scholar
  14. 14.
    Nathan CF, Jr Hibbs J B. Role of nitric oxide synthesis in macrophage antimicrobial activity. Curr Opin Immunol. 1991;3:65.PubMedCrossRefGoogle Scholar
  15. 15.
    Williams-Ashman HG, Canellakis ZN. Polyamines in mammalian biology and medicine. Perspect Biol Med. 1979;22:421.PubMedCrossRefGoogle Scholar
  16. 16.
    Wu G, Jr Morris S M. Arginine metabolism: nitric oxide and beyond. Biochem J. 1998;336:1.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Charles D. Mills, Kristi Kincaid, Jennifer M. M-1/M-2 Macrophages and the Th1/Th2 Paradigm. J Immunol. 2000;164:6166–73.CrossRefGoogle Scholar
  18. 18.
    Bourlier V, Girard AZ, Miranville A, et al. Remodeling phenotype of human subcutaneous adipose tissue macrophages. Circulation. 2008;117:806–15.PubMedCrossRefGoogle Scholar
  19. 19.
    Weisberg SP, Hunter D, Huber R, et al. CCR2 modulates inflammatory and metabolic effects of high-fat feeding. J. Clin. Invest. 2006;116:115–24.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Kanda H, Tateya S, Tamori Y, Kotani K, Hiasa K, Riko K, et al. MCP-1 contributes to macrophage infiltration into adipose tissue, insulin resistance, and hepatic steatosis in obesity. J. Clin. Invest. 2006;116:1494–505.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Kamei N, Tobe K, Suzuki R. Overexpression of monocyte chemoattractant protein-1 in adipose tissues causes macrophage recruitment and insulin resistance. J Biol Chem. 2006;281:26602–14.PubMedCrossRefGoogle Scholar
  22. 22.
    Ito A, Suganami T, Yamauchi A, et al. Role of CC chemokines receptor 2 in bone marrow cells in the recruitment of macrophages into obese adipose tissue. J Biol Chem. 2008;283:35715–23.PubMedCrossRefGoogle Scholar
  23. 23.
    Hotamisligil GS, Shargill NS, Spiegelman BM. Adipose expression of tumor necrosis factor-α: direct role in obesity-linked insulin resistance. Science. 1993;259:87–91.PubMedCrossRefGoogle Scholar
  24. 24.
    Feinstein R, Kanety H, Papa MZ, et al. Tumor necrosis factor-α suppresses insulin-induced tyrosine phosphorylation of insulin receptor and its substrates. J Biol Chem. 1993;268:26055–8.PubMedGoogle Scholar
  25. 25.
    Fukuhara A, Matsuda M, Nishizawa M, et al. Visfatin: a protein secreted by visceral fat that mimics the effects of insulin. Science. 2005;307:426–30.PubMedCrossRefGoogle Scholar
  26. 26.
    Perreault M, Marette A. Targeted disruption of inducible nitric oxide synthase protects against obesity-linked insulin resistance in muscle. Nat Med. 2001;7:1138–43.PubMedCrossRefGoogle Scholar
  27. 27.
    Yuan M, Konstantopoulos N, Lee J, et al. Reversal of obesity-and diet induced insulin resistance with salicylates or targeted disruption of Ikkbeta. Science. 2001;293:1673–7.PubMedCrossRefGoogle Scholar
  28. 28.
    Pierce JW, Read MA, Ding H, et al. Salicylates inhibit I kappa B-alpha phosphorylation, endothelial-leukocyte adhesion molecule expression, and neutrophil transmigration. J. Immunol. 1996;156:3961–9.PubMedGoogle Scholar
  29. 29.
    Yin MJ, Yamamoto Y, Gaynor RB. The anti-inflammatory agents aspirin and salicylate inhibit the activity of IκB kinase-β. Nature. 1998;396:77–80.PubMedCrossRefGoogle Scholar
  30. 30.
    Carey NL, Stephanie MDY, Jennifer LB, Alan RS. Increased inflammatory properties of adipose tissue macrophages recruited during diet-induced obesity. Diabetes. 2007;56:16–23.CrossRefGoogle Scholar
  31. 31.
    Uysal KT, Wiesbrock SM, Marino MW, Hotamisligil GS. Protection from obesity induced insulin resistance in mice lacking TNF-alpha function. Nature. 1997;389:610–4.PubMedCrossRefGoogle Scholar
  32. 32.
    Mantovani Alberto. Inflammation and cancer: the macrophage connection. Medicina. 2007;67:32–4.Google Scholar
  33. 33.
    Geldhof AB, Van Ginderachter JA, Liu Y, Noël W, Raes G, De Baetselier P. Antagonistic effect of NK cells on alternatively activated monocytes: a contribution of NK cells to CTL generation. Blood. 2002;100(12):4049–58.PubMedCrossRefGoogle Scholar
  34. 34.
    Schutyser E, Struyf S, Proost P, et al. Identification of biologically active chemokine isoforms from ascitic fluid and elevated levels of CCL18/pulmonary and activation-regulated chemokine in ovarian carcinoma. JBC. 2002;277:24584–93.CrossRefGoogle Scholar
  35. 35.
    Joyce JA, Pollard JW. Microenvironmental regulation of metastasis. Nat Rev Cancer. 2009;9:239–52.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Bingle L, Brown NJ, Lewis CE. The role of tumor-associated macrophages in tumor progression: implications for new anticancer therapies. J Pathol. 2002;196:254–65.PubMedCrossRefGoogle Scholar
  37. 37.
    Jeffrey WP. Tumour-educated macrophages promote tumour progression and metastasis. Nat Rev Cancer. 2004;4:71–8.CrossRefGoogle Scholar
  38. 38.
    Ross R. Atherosclerosis: an inflammatory disease. N Engl J Med. 1999;340:115–26.PubMedCrossRefGoogle Scholar
  39. 39.
    Hansson GK. Inflammation, atherosclerosis, and coronary artery disease. N Engl J Med. 2005;352:1685–95.PubMedCrossRefGoogle Scholar
  40. 40.
    Bayes-Genis A, Conover CA, Overgaard MT, Bailey KR, Christiansen M, Jr Holmes D R, et al. Pregnancy-associated plasma protein A as a marker of acute coronary syndromes. N Engl J Med. 2001;345:1022–9.PubMedCrossRefGoogle Scholar
  41. 41.
    Cooke JP, Oka RK. Does leptin cause vascular disease? Circulation. 2002;106:1904–5.PubMedCrossRefGoogle Scholar
  42. 42.
    Gurtner GC, Werner S, Barrandon Y, Longaker MT. Wound repair and regeneration. Nature. 2008;453:314–21.PubMedCrossRefGoogle Scholar
  43. 43.
    Redd MJ, Cooper L, Wood W, Stramer B, Martin P. Wound healing and inflammation: embryos reveal the way to perfect repair. Philos Trans R Soc Lond B Biol Sci. 2004;359:777–84.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Eming SA, Daniel AM, Ronald G, et al. Genetically modified human keratinocytes overexpressing PDGF-A enhance the performance of a composite skin graft. Hum Gene Ther. 1998;9(4):529–39.PubMedCrossRefGoogle Scholar
  45. 45.
    Cai D, Yuan M, Frantz DF, et al. Local and systemic insulin resistance resulting from hepatic activation of IKK-beta and NF-kappa B. Nat Med. 2005;11:183–90.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Sinha S, Perdomo G, Brown NF, O’Doherty RM. Fatty acid-induced insulin resistance in L6 myotubes is prevented by inhibition of activation and nuclear localization of nuclear factor kappa B. J Biol Chem. 2004;279:41294–301.PubMedCrossRefGoogle Scholar
  47. 47.
    Monick MM, Robeff PK, Butler NS, et al. Phosphatidylinositol 3-kinase activity negatively regulates stability of cyclooxygenase 2 mRNA. J Biol Chem. 2002;277:32992.PubMedCrossRefGoogle Scholar
  48. 48.
    Sly LM, Ho V, Antignano F, et al. The role of SHIP in macrophages. Front Biosci. 2007;12:2836–48.PubMedCrossRefGoogle Scholar
  49. 49.
    Tzameli I, Fang H, Ollero M, et al. Regulated production of a peroxisome proliferator-activated receptor-gamma ligand during an early phase of adipocyte differentiation in 3T3-L1 adipocytes. J Biol Chem. 2004;279:36093–102.PubMedCrossRefGoogle Scholar
  50. 50.
    Ho VW, Sly LM. Derivation and characterization of murine alternatively activated (M2) macrophages. Methods Mol Biol. 2009;531:173–85.PubMedCrossRefGoogle Scholar
  51. 51.
    Straus DS, Glass CK. Anti-inflammatory actions of PPAR ligands: new Insights on cellular and molecular mechanisms. Trends Immunol. 2007;28:551–8.PubMedCrossRefGoogle Scholar
  52. 52.
    Eibl G. The role of PPAR-γ and its interactions with COX-2 in pancreatic cancer. PPAR research. 2008;2008:326915.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Han YP, Tuan TL, Wu H, et al. TNF-alpha stimulates activation of pro-MMP2 in human skin through NF-(kappa) B mediated induction of MT1-MMP. J Cell Sci. 2001;114:131–9.PubMedPubMedCentralGoogle Scholar
  54. 54.
    Iwaki M, Matsuda M, Maeda N, et al. Induction of adiponectin, a fat-derived antidiabetic and antiatherogenic factor, by nuclear receptors. Diabetes. 2003;52:1655–63.PubMedCrossRefGoogle Scholar
  55. 55.
    Vallabhapurapu S, Karin M. Regulation and function of NF-kappaB transcription factors in the immune system. Annu Rev Immunol. 2009;27:693–733.PubMedCrossRefGoogle Scholar
  56. 56.
    Li Q, Verma IM. NF-kappaB regulation in the immune system. Nat Rev Immunol. 2002;2:725–34.PubMedCrossRefGoogle Scholar
  57. 57.
    Cavaillon JM, Adib-Conquy M. Bench-to-bedside review: endotoxin tolerance as a model of leukocyte reprogramming in sepsis. Crit Care. 2006;10:233.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Porta C, Rimoldi M, Raes G, et al. Tolerance and M2 (alternative) macrophage polarization are related processes orchestrated by p50 nuclear factor κB. PNAS. 2008;106(35):14978–83.CrossRefGoogle Scholar
  59. 59.
    Zhang Z, Li X, Lv W, et al. Ginsenoside Re Reduces Insulin Resistance through Inhibition of c-Jun NH2-Terminal Kinase and Nuclear Factor- Κb. Mol Endocrinol. 2008;22:186–95.PubMedCrossRefGoogle Scholar
  60. 60.
    Weisberg SP, McCann D, Desai M, et al. Obesity is associated with macrophage accumulation in adipose tissue. Clin Invest. 2003;112:1796–808.CrossRefGoogle Scholar
  61. 61.
    Ferrante AW Jr. Obesity-induced inflammation: a metabolic dialogue in the language of inflammation. J Intern Med. 2007;262:408–14.PubMedCrossRefGoogle Scholar
  62. 62.
    Fong CHY, Didierlaurent A, et al. An antiinflammatory role for IKKβ through the inhibition of “classical” macrophage activation. J Exp Med. 2008;205(6):1269–76.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Powell DJ, Turban S, Gray A, et al. Intracellular ceramide synthesis and protein kinase Cζ activation play an essential role in palmitate-induced insulin resistance in rat L6 skeletal muscle cells. Biochem J. 2004;382:619–29.PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Sabin MA, Stewart CE, Crowne EC, et al. Fatty acid-induced defects in insulin signalling, in myotubes derived from children, are related to ceramide production from palmitate rather than the accumulation of intra myocellular lipid. J Cell Physiol. 2007;211:244–52.PubMedCrossRefGoogle Scholar
  65. 65.
    Jove M, Planavila A, Laguna JC, Vazquez-Carrera M. Palmitate induced interleukin 6 production is mediated by protein kinase C and nuclear-factor kB activation and leads to glucose transporter 4 down-regulation in skeletal muscle cells. Endocrinology. 2005;146:3087–95.PubMedCrossRefGoogle Scholar
  66. 66.
    Jove M, Planavila A, Sanchez RM, et al. Palmitate induce tumor necrosis factor-a expression in C2C12 skeletal muscle cells by a mechanism involving protein kinase C and nuclear factor-kB activation. Endocrinology. 2006;147:552–61.PubMedCrossRefGoogle Scholar
  67. 67.
    Weigert C, Brodbeck K, Staiger H, Kaush C, Machicao F, Haring H, et al. Palmitate, but not unsaturated fatty acids, induces the expression of interleukin-6 in human myotubes through proteosomedependent activation of nuclear factor-kB. J Biol Chem. 2004;279:23942–52.PubMedCrossRefGoogle Scholar
  68. 68.
    Perkins ND. Oncogenes, tumor suppressors and p52 NF-kB. Oncogene. 2003;22:7553–6.PubMedCrossRefGoogle Scholar
  69. 69.
    Kieran M, Blank V, Logeat F, et al. The DNA binding subunit of NF-kB is identical to factor KBF1 and homologous to the rel oncogene product. Cell. 1990;62:1007–18.PubMedCrossRefGoogle Scholar
  70. 70.
    Ghosh S, Gifford AM, Riviere LR, et al. Cloning of the p50 DNA binding subunit of NF-kB: homology to rel and dorsal. Cell. 1990;62:1019–29.PubMedCrossRefGoogle Scholar
  71. 71.
    Gilmore TD. Multiple mutations contribute to the oncogenicity of the retroviral oncoprotein v-Rel. Oncogene. 1999;18:6925–37.PubMedCrossRefGoogle Scholar
  72. 72.
    Perkins ND. NF-κB: tumor promoter or suppressor? Trends Cell Biol. 2004;14:64–9.PubMedCrossRefGoogle Scholar
  73. 73.
    Pahl HL. Activators and target genes of Rel/NF-kB transcription factors. Oncogene. 1999;18:6853–66.PubMedCrossRefGoogle Scholar
  74. 74.
    Ryan KM, Ernst MK, Rice NR, Vousden KH. Role of NF-kB in p53-mediated programmed cell death. Nature. 2000;404:892–7.PubMedCrossRefGoogle Scholar
  75. 75.
    Rocha S, Campbell KJ, Perkins ND. p53 andMdM2 independent repression of NF-kB transactivation by the ARF tumour suppressor. Mol Cell. 2003;12:15–25.PubMedCrossRefGoogle Scholar
  76. 76.
    Rauh MJ, Sly LM, Kalesnikoff J, et al. The role of SHIP1 in macrophage programming and activation. Biochem Soc Trans. 2004;32:5.CrossRefGoogle Scholar
  77. 77.
    Sly LM, Rauh MJ, Kalesnikoff J, et al. SHIP, SHIP2, and PTEN activities are regulated in vivo by modulation of their protein levels: SHIP is up-regulated in macrophages and mast cells by lipopolysaccharide. Exp Hematol. 2003;31:1170–81.PubMedCrossRefGoogle Scholar
  78. 78.
    Maxwell MJ, Yuan Y, Anderson KE, et al. SHIP-1 and lyn kinase negatively regulate integrin alpha IIb beta3 signaling in platelets. J Biol Chem. 2004;279:32196–204.PubMedCrossRefGoogle Scholar
  79. 79.
    Kalesnikoff J, Lam V, Krystal G. SHIP represses mast cell activation and reveals that IgE alone triggers signaling pathways which enhance normal mast cell survival. Mol Immunol. 2002;38:1201–6.PubMedCrossRefGoogle Scholar
  80. 80.
    Lam V, Kalesnikoff J, Lee CW, Hernandez-Hansen V, et al. IgE alone stimulates mast cell adhesion to fibronectin via pathways similar to those used by IgE + antigen but distinct from those used by Steel factor. Blood. 2003;102:1405–13.PubMedCrossRefGoogle Scholar
  81. 81.
    Giuriato S, Pesesse X, Bodin S, et al. SH2-containing inositol 5-phosphatases 1 and 2 in blood platelets: their interactions and roes in the control of phosphatidylinositol 3,4,5-trisphosphate levels. Biochem J. 2003;376:199–207.PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Gardai S, Whitlock BB, Helgason C, et al. Activation of SHIP by NADPH oxidase-stimulated Lyn leads to enhanced apoptosis in neutrophils. J Biol Chem. 2002;277:5236–46.PubMedCrossRefGoogle Scholar
  83. 83.
    Fibach E. Involvement of phosphatases in proliferation, maturation, and hemoglobinization of developing erythroid cells. J Signal Transduc. 2011;2011:860985.CrossRefGoogle Scholar
  84. 84.
    Sly LM, Rauh MJ, Kalesnikoff J, et al. LPS-induced upregulation of SHIP is essential for endotoxin tolerance. Immunity. 2004;21:227–39.PubMedCrossRefGoogle Scholar
  85. 85.
    Guha M, Mackman N. The phosphatidylinositol 3-kinase-Akt pathway limits lipopolysaccharide activation of signaling pathways and expression of inflammatory mediators in human monocytic cells. J Biol Chem. 2002;277:32124.PubMedCrossRefGoogle Scholar
  86. 86.
    Huang XL, Wang YJ, Yan JW, et al. Role of anti-inflammatory cytokines IL-4 and IL-13 in systemicsclerosis Inflamm. Res. 2015;64:151–9.Google Scholar
  87. 87.
    Rauh MJ, Ho V, Pereira C, et al. SHIP represses the generation of alternatively activated macrophages. Immunity. 2005;23:361–74.PubMedCrossRefGoogle Scholar
  88. 88.
    Hamilton MJ, Ho VW, Kuroda E, et al. Role of SHIP in cancer. Exp Hematol. 2011;39:2–3.PubMedCrossRefGoogle Scholar
  89. 89.
    Jiang BH, Liu LZ. PI3 K/PTEN signaling in angiogenesis and tumorigenesis. Adv Cancer Res. 2009;102:19–65.PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Ho VW, Hamilton MJ, Kuroda E, et al. Tumour-associated macrophages. Biomed Life Sci. 2012;3:135–51.Google Scholar
  91. 91.
    Costinean S, Sandhu SK, Pedersen IM, et al. Src homology 2 domain-containing inositol-5-phosphatase and CCAAT enhancer-binding protein beta are targeted by miR-155 in B cells of Emicro-MiR-155 transgenic mice. Blood. 2009;114:1374–82.PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Lo TC, Barnhill LM, Kim Y, et al. Inactivation of SHIP1 in T-cell acute lymphoblastic leukemia due to mutation and extensive alternative splicing. Leuk. 2009;33:1562–6.CrossRefGoogle Scholar
  93. 93.
    O’Connell RM, Chaudhuri AA, Rao DS, Baltimore D. Inositol phosphatase SHIP1 is a primary target of miR-155. Proc Natl Acad Sci USA. 2009;106:7113–8.PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Pedersen IM, Otero D, Kao E, et al. Onco-miR-155 targets SHIP1 to promote TNFα-dependent growth of B cell lymphomas. EMBO Mol Med. 2009;1:288–95.PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Yamanaka Y, Tagawa H, Takahashi N, et al. Aberrant overexpression of microRNAs activate AKT signaling via down-regulation of tumor suppressors in natural killer-cell lymphoma/leukemia. Blood. 2009;114:3265–75.PubMedCrossRefGoogle Scholar
  96. 96.
    Marx N, Bourcier T, Sukhova G, et al. PPARg activation in human endothelial cells increases plasminogen activator inhibitor type-I expression. Arterioscler Thromb Vasc Biol. 1999;19:546–51.PubMedCrossRefGoogle Scholar
  97. 97.
    Inoue I, Shino K, Noji S, et al. Expression of peroxisome proliferator-activated receptor a (PPARa) in primary cultures of human vascular endothelial cells. Biochem Biophys Res Commun. 1998;246:370–4.PubMedCrossRefGoogle Scholar
  98. 98.
    Issemann I, Green S. Activation of a member of the steroid hormone receptor superfamily by peroxisome proliferators. Nature. 1990;347:645–50.PubMedCrossRefGoogle Scholar
  99. 99.
    Fajas L, Auboeuf D, Raspé E, et al. The organization, promoter analysis, and expression of the human PPAR gamma gene. J Biol Chem. 1997;272(18):779–89.Google Scholar
  100. 100.
    Hevener AL, Olefsky JM, Reichart D, et al. Macrophage PPARγ is required for normal skeletal muscle and hepatic insulin sensitivity and full anti-diabetic effects of thiazolidinediones. J Clin Investig. 2007;117:1658–69.PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Kliewer SA, Umesono K, Noonan DJ, et al. Convergence of 9-cis retinoic acid and peroxisome proliferator signalling pathways through heterodimer formation of their receptors. Nature. 1992;358:771–4.PubMedCrossRefGoogle Scholar
  102. 102.
    Kliewer SA, Sundseth SS, Jones SA, et al. Fatty acids and eicosanoids regulate gene expression through direct interactions with peroxisome proliferator-activated receptors alpha and gamma. Proc Natl Acad Sci USA. 1997;94:4318–23.PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    McIntyre TM, Pontsler AV, Silva AR, et al. Identification of an intracellular receptor for lysophosphatidic acid (LPA): LPA is a transcellular PPAR gamma agonist. Proc Natl Acad Sci USA. 2003;100:131–6.PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Ricote M, Li AC, Willson TM, et al. The peroxisome proliferator-activated receptor-gamma is a negative regulator of macrophage activation. Nature. 1998;391:79–82.PubMedCrossRefGoogle Scholar
  105. 105.
    Lazar MA. PPAR gamma, 10 years later. Biochimie. 2005;87:9–13.PubMedCrossRefGoogle Scholar
  106. 106.
    Han KH, Chang MK, Boullier A, et al. Oxidized LDL reduces monocyte CCR2 expression through pathways involving peroxisome proliferator activated receptor-ϒ. J Clin Invest. 2000;106:793–802.PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Barlic J, Zhang Y, Foley JF, Murphy PM. Oxidized lipid-driven chemokine receptor switch, CCR2 to CX3CR1, mediates adhesion of human macrophages to coronary artery smooth muscle cells through a peroxisome proliferator-activated receptor gamma-dependent pathway. Circulation. 2006;114:807–19.PubMedCrossRefGoogle Scholar
  108. 108.
    Chawla A, Barak Y, Nagy L, et al. PPAR-gamma dependent and independent effects on macrophage-gene expression in lipid metabolism and inflammation. Nat Med. 2001;7:48–52.PubMedCrossRefGoogle Scholar
  109. 109.
    Spiegelman BM. PPAR-γ Adipogenic Regulator and Thiazolidinedione Receptor. Diabetes. 1998;47:507–14.PubMedCrossRefGoogle Scholar
  110. 110.
    Nagai S, Shimizu C, Taniguchi UMS, et al. Identification of a function peroxisome proliferator-activated receptor responsive element within the murine perilipin gene. Endocrinology. 2004;145:2346–56.PubMedCrossRefGoogle Scholar
  111. 111.
    Guan HP, Ishizuka T, Chui PC, et al. Corepressors selectively control the transcriptional activity of PPAR gamma in adipocytes. Genes Dev. 2005;19:453–61.PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Odegaard JI, Ricardo-Gonzalez RR, Goforth MH, et al. Macrophage-specific PPAR gamma controls alternative activation and improves insulin resistance. Nature. 2007;447:1116–20.PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Pascual G, Glass CK. Nuclear receptors versus inflammation: mechanisms of transrepression. Trends Endocrinol Metab. 2006;17:321–7.PubMedCrossRefGoogle Scholar
  114. 114.
    Yerly-Motta V, Contassot E, Pavy JJ, et al. Expression of cyclins and cdks throughout murine carcinogenesis Cell. Mol Biol. 1999;45:1217–28.Google Scholar
  115. 115.
    Peters JM, Aoyama T, Cattley RC, et al. Role of peroxisome proliferator-activated receptor alpha in altered cell cycle regulation in mouse liver. Carcinogenesis. 1998;19:1989–94.PubMedCrossRefGoogle Scholar
  116. 116.
    Oshima M, Dinchuk JE, Kargman SL, et al. Suppression of intestinal polyposis in Apc delta716 knockout mice by inhibition of cyclooxygenase 2 (COX-2). Cell. 1996;87:803.PubMedCrossRefGoogle Scholar
  117. 117.
    Saez E, Tontonoz P, Nelson MC, et al. Activators of the nuclear receptor PPARgamma enhance colon polyp formation. Nat Med. 1998;4:1058–61.PubMedCrossRefGoogle Scholar
  118. 118.
    Sarraf P, Mueller E, Jones D, et al. Differentiation and reversal of malignant changes in colon cancer through PPARgamma. Nat Med. 1998;4:1046–52.PubMedCrossRefGoogle Scholar
  119. 119.
    Friedmann PS, Cooper HL, Healy E. Peroxisome proliferator-activated receptors and their relevance to dermatology. Acta Derm Venereol. 2005;85:194–202.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Basel 2015

Authors and Affiliations

  • Samina Bashir
    • 1
  • Yadhu Sharma
    • 1
  • Asif Elahi
    • 1
  • Farah Khan
    • 1
    Email author
  1. 1.Department of Biochemistry, Faculty of ScienceJamia Hamdard UniversityNew DelhiIndia

Personalised recommendations