Advertisement

Inflammation Research

, Volume 64, Issue 6, pp 395–403 | Cite as

Higenamine regulates Nrf2-HO-1-Hmgb1 axis and attenuates intestinal ischemia–reperfusion injury in mice

  • Chao Liu
  • Chenyu Zhu
  • Guangsheng Wang
  • Rui Xu
  • Yaoming ZhuEmail author
Original Research Paper

Abstract

Introduction

Intestinal ischemia and reperfusion (IR) syndrome is a life-threatening dilemma caused by diverse events. Higenamine (HG), an active ingredient of Aconiti Lateralis Radix Praeparata, has been traditionally used as a heart stimulant and anti-inflammatory agent in oriental countries. But the function of HG on intestine IR injury has never been investigated.

Materials and methods

Mice underwent a 2 cm midline laparotomy, and the superior mesenteric artery (SMA) was obstructed by micro-vascular clamp to induce intestinal ischemia.

Results

In our current study, HG increases mouse intestinal epithelial (IEC-6) cell viability through induced heme oxygenase-1 (HO-1) production in vitro. In our in vivo murine intestinal IR injury model, the increased HO-1 protein level and activity, decreased intestinal injury score, Myeloperoxidase (MPO) activity, and inflammatory cytokine expression induced by HG were all abolished with additional treatment of HO-1 inhibitor zinc protoporphyrin IX (ZnPPIX). Furthermore, HG reduced high mobility group box-1 (Hmgb1) expression in IR injury-performed intestine which was inhibited by additional administration of ZnPPIX. And HG treatment significantly decreased HO-1 expression in nuclear factor erythroid 2-related factor (Nrf-2) SiRNA-transfected cells but not in control SiRNA-transfected cells.

Conclusion

Our study provides evidence HG regulates Nrf2-HO-1-Hmgb1 axis and attenuates intestinal IR injury in mice.

Keywords

Higenamine Nrf-2 HO-1 Hmgb1 Intestinal IR injury 

References

  1. 1.
    Vollmar B, Menger MD. Intestinal ischemia/reperfusion: microcirculatory pathology and functional consequences. Langenbecks Arch Surg. 2011;396:13–29.CrossRefPubMedGoogle Scholar
  2. 2.
    Cerqueira NF, Hussni CA, Yoshida WB. Pathophysiology of mesenteric ischemia/reperfusion: a review. Acta Cir Bras. 2005;20:336–43.PubMedGoogle Scholar
  3. 3.
    Naito Y, Takagi T, Uchiyama K, Handa O, Tomatsuri N, Imamoto E, Kokura S, Ichikawa H, Yoshida N, Yoshikawa T. Suppression of intestinal ischemia-reperfusion injury by a specific peroxisome proliferator-activated receptor-gamma ligand, pioglitazone, in rats. Redox Rep. 2002;7:294–9.CrossRefPubMedGoogle Scholar
  4. 4.
    Chen LW, Egan L, Li ZW, Greten FR, Kagnoff MF, Karin M. The two faces of IKK and NF-kappaB inhibition: prevention of systemic inflammation but increased local injury following intestinal ischemia–reperfusion. Nat Med. 2003;9:575–81.CrossRefPubMedGoogle Scholar
  5. 5.
    Fink MP. Another negative clinical trial of a new agent for the treatment of sepsis: rethinking the process of developing adjuvant treatments for serious infections. Crit Care Med. 1995;23:989–91.CrossRefPubMedGoogle Scholar
  6. 6.
    Wheeler AP, Bernard GR. Treating patients with severe sepsis. N Engl J Med. 1999;340:207–14.CrossRefPubMedGoogle Scholar
  7. 7.
    Ha YM, Kim MY, Park MK, Lee YS, Kim YM, Kim HJ, Lee JH, Chang KC. Higenamine reduces HMGB1 during hypoxia-induced brain injury by induction of heme oxygenase-1 through PI3K/Akt/Nrf-2 signal pathways. Apoptosis. 2012;17:463–74.CrossRefPubMedGoogle Scholar
  8. 8.
    Pyo MK, Kim JM, Jin JL, Chang KC, Lee DH, Yun-Choi HS. Effects of higenamine and its 1-naphthyl analogs, YS-49 and YS-51, on platelet TXA2 synthesis and aggregation. Thromb Res. 2007;120:81–6.CrossRefPubMedGoogle Scholar
  9. 9.
    Park JE, Kang YJ, Park MK, Lee YS, Kim HJ, Seo HG, Lee JH, Hye SY, Shin JS, Lee HW, et al. Enantiomers of higenamine inhibit LPS-induced iNOS in a macrophage cell line and improve the survival of mice with experimental endotoxemia. Int Immunopharmacol. 2006;6:226–33.CrossRefPubMedGoogle Scholar
  10. 10.
    Lee YS, Kang YJ, Kim HJ, Park MK, Seo HG, Lee JH, Yun-Choi HS, Chang KC. Higenamine reduces apoptotic cell death by induction of heme oxygenase-1 in rat myocardial ischemia–reperfusion injury. Apoptosis. 2006;11:1091–100.CrossRefPubMedGoogle Scholar
  11. 11.
    Kimura I, Makino M, Takamura Y, Islam MA, Kimura M. Positive chronotropic and inotropic effects of higenamine and its enhancing action on the aconitine-induced tachyarrhythmia in isolated murine atria. Jpn J Pharmacol. 1994;66:75–80.CrossRefPubMedGoogle Scholar
  12. 12.
    Fukatsu K, Ueno C, Maeshima Y, Hara E, Nagayoshi H, Omata J, Mochizuki H, Hiraide H. Effects of l-arginine infusion during ischemia on gut blood perfusion, oxygen tension, and circulating myeloid cell activation in a murine gut ischemia/reperfusion model. JPEN J Parenter Enteral Nutr. 2004;28(224–230):230–1.Google Scholar
  13. 13.
    Kojima M, Tanabe M, Shinoda M, Yamada S, Miyasho T, Suda K, Hibi T, Obara H, Itano O, Kawachi S, et al. Role of high mobility group box chromosomal protein 1 in ischemia-reperfusion injury in the rat small intestine. J Surg Res. 2012;178:466–71.CrossRefPubMedGoogle Scholar
  14. 14.
    Zhang A, Mao X, Li L, Tong Y, Huang Y, Lan Y, Jiang H. Necrostatin-1 inhibits Hmgb1-IL-23/IL-17 pathway and attenuates cardiac ischemia reperfusion injury. Transpl Int. 2014;27:1077–85.CrossRefPubMedGoogle Scholar
  15. 15.
    Coimbra R, Porcides R, Loomis W, Melbostad H, Lall R, Deree J, Wolf P, Hoyt DB. HSPTX protects against hemorrhagic shock resuscitation-induced tissue injury: an attractive alternative to Ringer’s lactate. J Trauma. 2006;60:41–51.CrossRefPubMedGoogle Scholar
  16. 16.
    Yamamoto S, Tanabe M, Wakabayashi G, Shimazu M, Matsumoto K, Kitajima M. The role of tumor necrosis factor-alpha and interleukin-1beta in ischemia-reperfusion injury of the rat small intestine. J Surg Res. 2001;99:134–41.CrossRefPubMedGoogle Scholar
  17. 17.
    Erlandsson HH, Andersson U. Mini-review: the nuclear protein HMGB1 as a proinflammatory mediator. Eur J Immunol. 2004;34:1503–12.CrossRefGoogle Scholar
  18. 18.
    Balogun E, Hoque M, Gong P, Killeen E, Green CJ, Foresti R, Alam J, Motterlini R. Curcumin activates the haem oxygenase-1 gene via regulation of Nrf2 and the antioxidant-responsive element. Biochem J. 2003;371:887–95.CrossRefPubMedCentralPubMedGoogle Scholar
  19. 19.
    Maines MD. The heme oxygenase system: a regulator of second messenger gases. Annu Rev Pharmacol Toxicol. 1997;37:517–54.CrossRefPubMedGoogle Scholar
  20. 20.
    Shibahara S. Regulation of heme oxygenase gene expression. Semin Hematol. 1988;25:370–6.PubMedGoogle Scholar
  21. 21.
    Attuwaybi BO, Kozar RA, Moore-Olufemi SD, Sato N, Hassoun HT, Weisbrodt NW, Moore FA. Heme oxygenase-1 induction by hemin protects against gut ischemia/reperfusion injury. J Surg Res. 2004;118:53–7.CrossRefPubMedGoogle Scholar
  22. 22.
    Attuwaybi B, Kozar RA, Gates KS, Moore-Olufemi S, Sato N, Weisbrodt NW, Moore FA. Hypertonic saline prevents inflammation, injury, and impaired intestinal transit after gut ischemia/reperfusion by inducing heme oxygenase 1 enzyme. J Trauma. 2004;56(749–758):758–9.Google Scholar
  23. 23.
    Sakamoto N, Kokura S, Okuda T, Hattori T, Katada K, Isozaki Y, Nakabe N, Handa O, Takagi T, Ishikawa T, et al. Heme oxygenase-1 (Hsp32) is involved in the protection of small intestine by whole body mild hyperthermia from ischemia/reperfusion injury in rat. Int J Hyperthermia. 2005;21:603–14.CrossRefPubMedGoogle Scholar
  24. 24.
    Tamion F, Richard V, Renet S, Thuillez C. Intestinal preconditioning prevents inflammatory response by modulating heme oxygenase-1 expression in endotoxic shock model. Am J Physiol Gastrointest Liver Physiol. 2007;293:G1308–14.CrossRefPubMedGoogle Scholar
  25. 25.
    Pang QF, Ji Y, Bermudez-Humaran LG, Zhou QM, Hu G, Zeng Y. Protective effects of a heme oxygenase-1-secreting Lactococcus lactis on mucosal injury induced by hemorrhagic shock in rats. J Surg Res. 2009;153:39–45.CrossRefPubMedGoogle Scholar
  26. 26.
    Giris M, Erbil Y, Oztezcan S, Olgac V, Barbaros U, Deveci U, Kirgiz B, Uysal M, Toker GA. The effect of heme oxygenase-1 induction by glutamine on radiation-induced intestinal damage: the effect of heme oxygenase-1 on radiation enteritis. Am J Surg. 2006;191:503–9.CrossRefPubMedGoogle Scholar
  27. 27.
    Li X, Schwacha MG, Chaudry IH, Choudhry MA. Heme oxygenase-1 protects against neutrophil-mediated intestinal damage by down-regulation of neutrophil p47phox and p67phox activity and O2- production in a two-hit model of alcohol intoxication and burn injury. J Immunol. 2008;180:6933–40.CrossRefPubMedCentralPubMedGoogle Scholar
  28. 28.
    Umeda K, Takahashi T, Inoue K, Shimizu H, Maeda S, Morimatsu H, Omori E, Akagi R, Katayama H, Morita K. Prevention of hemorrhagic shock-induced intestinal tissue injury by glutamine via heme oxygenase-1 induction. Shock. 2009;31:40–9.CrossRefPubMedGoogle Scholar
  29. 29.
    Keyse SM, Tyrrell RM. Heme oxygenase is the major 32-kDa stress protein induced in human skin fibroblasts by UVA radiation, hydrogen peroxide, and sodium arsenite. Proc Natl Acad Sci U S A. 1989;86:99–103.CrossRefPubMedCentralPubMedGoogle Scholar
  30. 30.
    Ryter SW, Alam J, Choi AM. Heme oxygenase-1/carbon monoxide: from basic science to therapeutic applications. Physiol Rev. 2006;86:583–650.CrossRefPubMedGoogle Scholar
  31. 31.
    Sims GP, Rowe DC, Rietdijk ST, Herbst R, Coyle AJ. HMGB1 and RAGE in inflammation and cancer. Annu Rev Immunol. 2010;28:367–88.CrossRefPubMedGoogle Scholar
  32. 32.
    Scaffidi P, Misteli T, Bianchi ME. Release of chromatin protein HMGB1 by necrotic cells triggers inflammation. Nature. 2002;418:191–5.CrossRefPubMedGoogle Scholar
  33. 33.
    Watanabe T, Kubota S, Nagaya M, Ozaki S, Nagafuchi H, Akashi K, Taira Y, Tsukikawa S, Oowada S, Nakano S. The role of HMGB-1 on the development of necrosis during hepatic ischemia and hepatic ischemia/reperfusion injury in mice. J Surg Res. 2005;124:59–66.CrossRefPubMedGoogle Scholar
  34. 34.
    Goldstein RS, Gallowitsch-Puerta M, Yang L, Rosas-Ballina M, Huston JM, Czura CJ, Lee DC, Ward MF, Bruchfeld AN, Wang H, et al. Elevated high-mobility group box 1 levels in patients with cerebral and myocardial ischemia. Shock. 2006;25:571–4.CrossRefPubMedGoogle Scholar
  35. 35.
    Wu H, Chen G, Wyburn KR, Yin J, Bertolino P, Eris JM, Alexander SI, Sharland AF, Chadban SJ. TLR4 activation mediates kidney ischemia/reperfusion injury. J Clin Invest. 2007;117:2847–59.CrossRefPubMedCentralPubMedGoogle Scholar
  36. 36.
    Calvert JW, Jha S, Gundewar S, Elrod JW, Ramachandran A, Pattillo CB, Kevil CG, Lefer DJ. Hydrogen sulfide mediates cardioprotection through Nrf2 signaling. Circ Res. 2009;105:365–74.CrossRefPubMedCentralPubMedGoogle Scholar
  37. 37.
    Wondrak GT, Villeneuve NF, Lamore SD, Bause AS, Jiang T, Zhang DD. The cinnamon-derived dietary factor cinnamic aldehyde activates the Nrf2-dependent antioxidant response in human epithelial colon cells. Molecules. 2010;15:3338–55.CrossRefPubMedCentralPubMedGoogle Scholar
  38. 38.
    Ha YM, Ham SA, Kim YM, Lee YS, Kim HJ, Seo HG, Lee JH, Park MK, Chang KC. beta(1)-adrenergic receptor-mediated HO-1 induction, via PI3K and p38 MAPK, by isoproterenol in RAW 264.7 cells leads to inhibition of HMGB1 release in LPS-activated RAW 264.7 cells and increases in survival rate of CLP-induced septic mice. Biochem Pharmacol. 2011;82:769–77.CrossRefPubMedGoogle Scholar
  39. 39.
    Wang J, Hu X, Jiang H. Nrf-2-HO-1-HMGB1 axis: an important therapeutic approach for protection against myocardial ischemia and reperfusion injury. Int J Cardiol. 2014;172:223–4.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Basel 2015

Authors and Affiliations

  • Chao Liu
    • 1
  • Chenyu Zhu
    • 1
  • Guangsheng Wang
    • 1
  • Rui Xu
    • 1
  • Yaoming Zhu
    • 1
    Email author
  1. 1.Department of General Surgery, Yichang Central People’s Hospital, The First College of Clinical Medical ScienceChina Three Gorges UniversityYichangChina

Personalised recommendations