Skip to main content

Advertisement

Log in

Proliferation and differentiation of human adipose-derived mesenchymal stem cells (ASCs) into osteoblastic lineage are passage dependent

  • Original Research Paper
  • Published:
Inflammation Research Aims and scope Submit manuscript

Abstract

Objective

The effect of in vitro expansion of human adipose-derived stem cells (ASCs) on stem cell properties is controversial. We examined serial subcultivation with expansion on the ability of ASCs to grow and differentiate into osteoblastic lineages.

Design

Flow cytometric analysis, growth kinetics, cell population doubling time, light microscopy and confocal analysis, and osteogenesis induction were performed to assess growth and osteogenic potential of subcultivated ASCs at passages 2 (P2), P4 and P6.

Results

Flow cytometric analysis revealed that ASCs at P2 express classical mesenchymal stem cell markers including CD44, CD73, and CD105, but not CD14, CD19, CD34, CD45, or HLA-DR. Calcium deposition and alkaline phosphatase activity were the highest at P2 but completely abrogated at P4. Increased passage number impaired cell growth; P2 cultures exhibited exponential growth, while cells at P4 and P6 showed near linear growth with cell population doubling times increased from 3.2 at P2 to 4.8 d at P6. Morphologically, cells in various subcultivation stages showed flattened shape at low density but spindle-like structures at confluency as judged by phalloidin staining.

Conclusions

Osteogenic potential of ASCs is impaired by successive passaging and may not serve as a useful clinical source of osteogenic ASCs past P2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Bruder SP, Jaiswal N, Haynesworth SE. Growth kinetics, self-renewal, and the osteogenic potential of purified human mesenchymal stem cells during extensive subcultivation and following cryopreservation. J Cell Biochem. 1997;64:278–94.

    Article  PubMed  CAS  Google Scholar 

  2. Haynesworth SE, Goshima J, Goldberg VM, Caplan AI. Characterization of cells with osteogenic potential from human marrow. Bone. 1992;13:81–8.

    Article  PubMed  CAS  Google Scholar 

  3. Meyer TP, Hofmann B, Zaisserer J, Jacobs VR, Fuchs B, Rapp S, Weinauer F, Burkhart J. Analysis and cryopreservation of hematopoietic stem and progenitor cells from umbilical cord blood. Cytotherapy. 2006;8:265–76.

    Article  PubMed  CAS  Google Scholar 

  4. Kadam S, Govindasamy V, Bhonde R. Generation of functional islets from human umbilical cord and placenta derived mesenchymal stem cells. Methods Mol Biol. 2012;879:291–313.

    Article  PubMed  CAS  Google Scholar 

  5. Zheng B, Chen CW, Li G, Thompson SD, Poddar M, Peault B, Huard J. Isolation of myogenic stem cells from cultures of cryopreserved human skeletal muscle. Cell Transplant. 2012;21:1087–93.

    Article  PubMed  Google Scholar 

  6. Toma JG, Akhavan M, Fernandes KJ, Barnabe-Heider F, Sadikot A, Kaplan DR, Miller FD. Isolation of multipotent adult stem cells from the dermis of mammalian skin. Nat Cell Biol. 2001;3:778–84.

    Article  PubMed  CAS  Google Scholar 

  7. Gronthos S, Franklin DM, Leddy HA, Robey PG, Storms RW, Gimble JM. Surface protein characterization of human adipose tissue-derived stromal cells. J Cell Physiol. 2001;189:54–63.

    Article  PubMed  CAS  Google Scholar 

  8. Gimble JM, Katz AJ, Bunnell BA. Adipose-derived stem cells for regenerative medicine. Circ Res. 2007;100:1249–60.

    Article  PubMed  CAS  Google Scholar 

  9. Mitchell JB, McIntosh K, Zvonic S, Garrett S, Floyd ZE, Kloster A, Di Halvorsen Y, Storms RW, Goh B, Kilroy G, Wu X, Gimble JM. Immunophenotype of human adipose-derived cells: temporal changes in stromal-associated and stem cell-associated markers. Stem Cells. 2006;24:376–85.

    Article  PubMed  Google Scholar 

  10. Gollasch M. Vasodilator signals from perivascular adipose tissue. Br J Pharmacol. 2012;165:633–42.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  11. Miao CY, Li ZY. The role of perivascular adipose tissue in vascular smooth muscle cell growth. Br J Pharmacol. 2012;165:643–58.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  12. Zuk PA, Zhu M, Mizuno H, Huang J, Futrell JW, Katz AJ, Benhaim P, Lorenz HP, Hedrick MH. Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng. 2001;7:211–28.

    Article  PubMed  CAS  Google Scholar 

  13. Zuk PA, Zhu M, Ashjian P, De Ugarte DA, Huang JI, Mizuno H, Alfonso ZC, Fraser JK, Benhaim P, Hedrick MH. Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell. 2002;13:4279–95.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  14. Dragoo JL, Samimi B, Zhu M, Hame SL, Thomas BJ, Lieberman JR, Hedrick MH, Benhaim P. Tissue-engineered cartilage and bone using stem cells from human infra patellar fat pads. J Bone Joint Surg Br. 2003;85:740–7.

    PubMed  CAS  Google Scholar 

  15. Hicok KC, Du Laney TV, Zhou YS, Halvorsen YD, Hitt DC, Cooper LF, Gimble JM. Human adipose-derived adult stem cells produce osteoid in vivo. Tissue Eng. 2004;10:371–80.

    Article  PubMed  CAS  Google Scholar 

  16. Erickson GR, Gimble JM, Franklin DM, Rice HE, Awad H, Guilak F. Chondrogenic potential of adipose tissue-derived stromal cells in vitro and in vivo. Biochem Biophys Res Commun. 2002;290:763–9.

    Article  PubMed  CAS  Google Scholar 

  17. Awad HA, Halvorsen YD, Gimble JM, Guilak F. Effects of transforming growth factor beta1 and dexamethasone on the growth and chondrogenic differentiation of adipose-derived stromal cells. Tissue Eng. 2003;9:1301–12.

    Article  PubMed  CAS  Google Scholar 

  18. Planat-Benard V, Menard C, Andre M, Puceat M, Perez A, Garcia-Verdugo JM, Penicaud L, Casteilla L. Spontaneous cardiomyocyte differentiation from adipose tissue stroma cells. Circ Res. 2004;94:223–9.

    Article  PubMed  CAS  Google Scholar 

  19. Mizuno H, Zuk PA, Zhu M, Lorenz HP, Benhaim P, Hedrick MH. Myogenic differentiation by human processed lipoaspirate cells. Plast Reconstr Surg. 2002;109:199–209.

    Article  PubMed  Google Scholar 

  20. Hung SC, Pochampally RR, Chen SC, Hsu SC, Prockop DJ. Angiogenic effects of human multipotent stromal cell conditioned medium activate the PI3 K-Akt pathway in hypoxic endothelial cells to inhibit apoptosis, increase survival, and stimulate angiogenesis. Stem Cells. 2007;25:2363–70.

    Article  PubMed  CAS  Google Scholar 

  21. Verseijden F, Jahr H, Posthumus-van Sluijs SJ, Ten Hagen TL, Hovius SE, Seynhaeve AL, van Neck JW, van Osch GJ, Hofer SO. Angiogenic capacity of human adipose-derived stromal cells during adipogenic differentiation: an in vitro study. Tissue Eng A. 2009;15:445–52.

    Article  CAS  Google Scholar 

  22. Anghileri E, Marconi S, Pignatelli A, Cifelli P, Galie M, Sbarbati A, Krampera M, Belluzzi O, Bonetti B. Neuronal differentiation potential of human adipose-derived mesenchymal stem cells. Stem Cells Dev. 2008;17:909–16.

    Article  PubMed  CAS  Google Scholar 

  23. Dhinsa BS, Adesida AB. Current clinical therapies for cartilage repair, their limitation and the role of stem cells. Curr Stem Cell Res Ther. 2012;7:143–8.

    Article  PubMed  CAS  Google Scholar 

  24. Ren ML, Peng W, Yang ZL, Sun XJ, Zhang SC, Wang ZG, Zhang B. Allogeneic adipose- derived stem cells with low immunogenicity constructing tissue-engineered bone for repairing bone defects in pigs. Cell Transplant. 2012;21:2711–21.

    Article  PubMed  Google Scholar 

  25. Filardo G, Madry H, Jelic M, Roffi A, Cucchiarini M, Kon E. Mesenchymal stem cells for the treatment of cartilage lesions: from preclinical findings to clinical application in orthopaedics. Knee Surg Sports Traumatol Arthrosc. 2013;21:1717–29.

    Article  PubMed  Google Scholar 

  26. Zaim M, Karaman S, Cetin G, Isik S. Donor age and long-term culture affect differentiation and proliferation of human bone marrow mesenchymal stem cells. Ann Hematol. 2012;91:1175–86.

    Article  PubMed  Google Scholar 

  27. de Girolamo L, Lopa S, Arrigoni E, Sartori MF, Baruffaldi Preis FW, Brini AT. Human adipose-derived stem cells isolated from young and elderly women: their differentiation potential and scaffold interaction during in vitro osteoblastic differentiation. Cytotherapy. 2009;11:793–803.

    Article  PubMed  Google Scholar 

  28. Shi YY, Nacamuli RP, Salim A, Longaker MT. The osteogenic potential of adipose-derived mesenchymal cells is maintained with aging. Plast Reconstr Surg. 2005;116:1686–96.

    Article  PubMed  CAS  Google Scholar 

  29. Padoin AV, Braga-Silva J, Martins P, Rezende K, Rezende AR, Grechi B, Gehlen D, Machado DC. Sources of processed lipoaspirate cells: influence of donor site on cell concentration. Plast Reconstr Surg. 2008;122:614–8.

    Article  PubMed  CAS  Google Scholar 

  30. Safwani WK, Makpol S, Sathapan S, Chua KH. The impact of long-term in vitro expansion on the senescence-associated markers of human adipose-derived stem cells. Appl Biochem Biotechnol. 2012;166:2101–13.

    Article  PubMed  CAS  Google Scholar 

  31. Wan Safwani WK, Makpol S, Sathapan S, Chua KH. The changes of stemness biomarkers expression in human adipose-derived stem cells during long-term manipulation. Biotechnol Appl Biochem. 2011;58:261–70.

    Article  PubMed  Google Scholar 

  32. Zaman WS, Makpol S, Sathapan S, Chua KH. Long-term in vitro expansion of human adipose-derived stem cells showed low risk of tumourigenicity. J Tissue Eng Regen. 2012;8:67–76.

    Article  Google Scholar 

  33. Gologan R, Dobrea C, Popa L, Gioada L, Dragomir M. Multiple myeloma in remission complicated by bone marrow granulomas. Rom J Intern Med. 2003;41:323–8.

    PubMed  CAS  Google Scholar 

  34. Altman R, Asch E, Bloch D, Bole G, Borenstein D, Brandt K, Christy W, Cooke TD, Greenwald R, Hochberg M, et al. Development of criteria for the classification and reporting of osteoarthritis. Classification of osteoarthritis of the knee diagnostic and therapeutic criteria committee of the American rheumatism association. Arthritis Rheum. 1986;29:1039–49.

    Article  PubMed  CAS  Google Scholar 

  35. Hochberg MC, Chang RW, Dwosh I, Lindsey S, Pincus T, Wolfe F. The American College of Rheumatology 1991 revised criteria for the classification of global functional status in rheumatoid arthritis. Arthritis Rheum. 1992;35:498–502.

    Article  PubMed  CAS  Google Scholar 

  36. Thouverey C, Strzelecka-Kiliszek A, Balcerzak M, Buchet R, Pikula S. Matrix vesicles originate from apical membrane microvilli of mineralizing osteoblast-like saos-2 cells. J Cell Biochem. 2009;106:127–38.

    Article  PubMed  CAS  Google Scholar 

  37. Jurgens WJ, Oedayrajsingh-Varma MJ, Helder MN, Zandiehdoulabi B, Schouten TE, Kuik DJ, Ritt MJ, van Milligen FJ. Effect of tissue-harvesting site on yield of stem cells derived from adipose tissue: implications for cell-based therapies. Cell Tissue Res. 2008;332:415–26.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Jung S, Sen A, Rosenberg L, Behie LA. Human mesenchymal stem cell culture: rapid and efficient isolation and expansion in a defined serum-free medium. J Tissue Eng Regen Med. 2012;6:391–403.

    Article  PubMed  CAS  Google Scholar 

  39. Jurgens WJ, Oedayrajsingh-Varma MJ, Helder MN, Zandiehdoulabi B, Schouten TE, Kuik DJ, Ritt MJ, van Milligen FJ. Effect of tissue-harvesting site on yield of stem cells derived from adipose tissue: implications for cell-based therapies. Cell Tissue Res. 2008;332:415–26.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Oedayrajsingh-Varma MJ, van Ham SM, Knippenberg M, Helder MN, Klein-Nulend J, Schouten TE, Ritt MJ, van Milligen FJ. Adipose tissue-derived mesenchymal stem cell yield and growth characteristics are affected by the tissue-harvesting procedure. Cytotherapy. 2006;8:166–77.

    Article  PubMed  CAS  Google Scholar 

  41. Halvorsen YD, Wilkison WO, Briggs MR. Human adipocyte proteomics––a complementary way of looking at fat. Pharmacogenomics. 2000;1:179–85.

    Article  PubMed  CAS  Google Scholar 

  42. Kang SK, Putnam L, Dufour J, Ylostalo J, Jung JS, Bunnell BA. Expression of telomerase extends the lifespan and enhances osteogenic differentiation of adipose tissue-derived stromal cells. Stem Cells. 2004;22:1356–72.

    Article  PubMed  CAS  Google Scholar 

  43. Wolbank S, Stadler G, Peterbauer A, Gillich A, Karbiener M, Streubel B, Wieser M, Katinger H, van Griensven M, Redl H, Gabriel C, Grillari J, Grillari-Voglauer R. Telomerase immortalized human amnion- and adipose-derived mesenchymal stem cells: maintenance of differentiation and immunomodulatory characteristics. Tissue Eng Part A. 2009;15:1843–54.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgments

WHF and JDB designed and coordinated the study. JDB, FS and EA provided the human fat tissues. WS, OK, EH, DA, SM, BB and RAM carried out the experiments. WF and JDB wrote and critically revised the manuscript. EH helped with the conception and design of the study, and with drafting the manuscript. All authors approved the final manuscript.

Conflict of interest

All authors declare that they have no competing interests. Jiovanni A. Di Battista is a professor of Medicine––Department of Pharmacology and Therapeutics at McGill University and recipient of a Canadian Institute of Health Research Grant (CIHR). Dr. Wissam Faour is a recipient of a Lebanese National Council for Scientific Research (LNCSR) Grant and an Assistant Professor of Pharmacology at the School of Medicine at the Lebanese American University. This work is supported by a grant from the Lebanese National Council for Scientific Research (LNCSR) and the Canadian Institute of Health research (CIHR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wissam H. Faour.

Additional information

Responsible Editor: John Di Battista.

W. Shebaby, O. Kizilay and E. Hamade contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Di Battista, J.A., Shebaby, W., Kizilay, O. et al. Proliferation and differentiation of human adipose-derived mesenchymal stem cells (ASCs) into osteoblastic lineage are passage dependent. Inflamm. Res. 63, 907–917 (2014). https://doi.org/10.1007/s00011-014-0764-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00011-014-0764-y

Keywords

Navigation