Inflammation Research

, Volume 63, Issue 9, pp 789–796 | Cite as

Safety and efficacy of high-dose leukocytapheresis in patients with refractory asthma

  • Tamotsu Ishizuka
  • Takeshi Hisada
  • Motoaki Hatori
  • Akio Koike
  • Kikuo Hanabuchi
  • Shinichi Matsuzaki
  • Yosuke Kamide
  • Mitsuyoshi Utsugi
  • Haruka Aoki
  • Reiko Yoshino
  • Noriko Yanagitani
  • Yasuhiko Koga
  • Akihiro Ono
  • Kyoichi Kaira
  • Noriaki Sunaga
  • Kunio Dobashi
  • Takahiro Tsuburai
  • Kazuo Akiyama
  • Masanobu Yamada
  • Kazuhiro Suzuki
  • Masatomo Mori
Original Research Paper

Abstract

Objective and design

An open-label, non-randomized, single-arm study was performed to investigate the safety and efficacy of high-dose leukocytapheresis (pulse LCAP) for refractory asthma.

Subjects

Six patients who fulfilled the ATS workshop criteria for refractory asthma were enrolled and completed this clinical study.

Treatment

After 4 weeks of observation, pulse LCAP using a large LCAP filter, Cellsorba® CS-180S, was performed twice with a 1-week interval at a target dose of 5 L per treatment session.

Methods

The clinical response was assessed by monitoring the peak expiratory flow rate (PEFR) twice a day. The asthma control test (ACT) was used to evaluate the condition of asthma symptoms. The fraction of exhaled nitric oxide (FeNO) as a biomarker for eosinophilic airway inflammation was measured using a chemiluminescence analyzer.

Results

PEFR in the morning or the evening and the sum total of the score on the ACT were increased after two consecutive sessions of pulse LCAP. FeNO decreased after pulse LCAP.

Conclusions

The results suggest the efficacy of pulse LCAP for refractory asthma.

Keywords

Refractory asthma Leukocytapheresis (LCAP) Peak expiratory flow rate (PEFR) Asthma control test (ACT) Fraction of exhaled nitric oxide (FeNO) 

Notes

Acknowledgments

This work was partly supported by Health and Labour Science Research Grants (main investigator: Takahiro Tsuburai, M.D.).

References

  1. 1.
    Amelink M, de Groot JC, de Nijs SB, Lutter R, Zwinderman AH, Sterk PJ, et al. Severe adult-onset asthma: a distinct phenotype. J Allergy Clin Immunol. 2013;132:336–41.PubMedCrossRefGoogle Scholar
  2. 2.
    Norman G, Faria R, Paton F, Llewellyn A, Fox D, Palmer S, et al. Omalizumab for the treatment of severe persistent allergic asthma: a systematic review and economic evaluation. Health Technol Assess. 2013;17:1–342.PubMedGoogle Scholar
  3. 3.
    Corren J, Lemanske RF, Hanania NA, Korenblat PE, Parsey MV, Arron JR, et al. Lebrikizumab treatment in adults with asthma. N Engl J Med. 2011;365:1088–98.PubMedCrossRefGoogle Scholar
  4. 4.
    Haldar P, Brightling CE, Hargadon B, Gupta S, Monteiro W, Sousa A, et al. Mepolizumab and exacerbations of refractory eosinophilic asthma. N Engl J Med. 2009;360:973–84.PubMedCentralPubMedCrossRefGoogle Scholar
  5. 5.
    Hanania NA, Wenzel S, Rosen K, Hsieh HJ, Mosesova S, Choy DF, et al. Exploring the effects of omalizumab in allergic asthma: an analysis of biomarkers in the EXTRA study. Am J Respir Crit Care Med. 2013;187:804–11.PubMedGoogle Scholar
  6. 6.
    Humbert M, Beasley R, Ayres J, Slavin R, Hebert J, Bousquet J, et al. Benefits of omalizumab as add-on therapy in patients with severe persistent asthma who are inadequately controlled despite best available therapy (GINA 2002 step 4 treatment): INNOVATE. Allergy. 2005;60:309–16.PubMedCrossRefGoogle Scholar
  7. 7.
    Nakagome K, Matsushita S, Nagata M. Neutrophilic inflammation in severe asthma. Int Arch Allergy Immunol. 2012;158(Suppl 1):96–102.PubMedCrossRefGoogle Scholar
  8. 8.
    Sawada K, Muto T, Shimoyama T, Satomi M, Sawada T, Nagawa H, et al. Multicenter randomized controlled trial for the treatment of ulcerative colitis with a leukocytapheresis column. Curr Pharm Des. 2003;9:307–21.PubMedCrossRefGoogle Scholar
  9. 9.
    Hidaka T, Suzuki K, Matsuki Y, Takamizawa-Matsumoto M, Kataharada K, Ishizuka T, et al. Filtration leukocytapheresis therapy in rheumatoid arthritis: a randomized, double-blind, placebo-controlled trial. Arthritis Rheum. 1999;42:431–7.PubMedCrossRefGoogle Scholar
  10. 10.
    Ishizuka T, Kawata T, Shimizu Y, Utsugi M, Endou K, Hisada T, et al. Safety and efficacy of extracorporeal granulocyte and monocyte adsorption apheresis in patients with severe persistent bronchial asthma. Inflammation. 2005;29:9–16.PubMedCrossRefGoogle Scholar
  11. 11.
    Sakuraba A, Motoya S, Watanabe K, Nishishita M, Kanke K, Matsui T, et al. An open-label prospective randomized multicenter study shows very rapid remission of ulcerative colitis by intensive granulocyte and monocyte adsorptive apheresis as compared with routine weekly treatment. Am J Gastroenterol. 2009;104:2990–5.PubMedCrossRefGoogle Scholar
  12. 12.
    Eguchi K, Saito K, Kondo M, Hidaka T, Ueki Y, Tanaka Y. Enhanced effect of high-dose leukocytapheresis using a large filter in rheumatoid arthritis. Mod Rheumatol. 2007;17:481–5.PubMedCrossRefGoogle Scholar
  13. 13.
    Proceedings of the ATS workshop on refractory asthma: current understanding, recommendations, and unanswered questions. American Thoracic Society. Am J Respir Crit Care Med. 2000; 162: 2341–51.Google Scholar
  14. 14.
    Maruyama H, Miyakawa Y, Gejyo F, Arakawa M. Anaphylactoid reaction induced by nafamostat mesilate in a hemodialysis patient. Nephron. 1996;74:468–9.PubMedCrossRefGoogle Scholar
  15. 15.
    Higuchi N, Yamazaki H, Kikuchi H, Gejyo F. Anaphylactoid reaction induced by a protease inhibitor, nafamostat mesilate, following nine administrations in a hemodialysis patient. Nephron. 2000;86:400–1.PubMedCrossRefGoogle Scholar
  16. 16.
    Schwertz H, Carter JM, Russ M, Schubert S, Schlitt A, Buerke U, et al. Serine protease inhibitor nafamostat given before reperfusion reduces inflammatory myocardial injury by complement and neutrophil inhibition. J Cardiovasc Pharmacol. 2008;52:151–60.PubMedCrossRefGoogle Scholar
  17. 17.
    Ishizaki M, Tanaka H, Kajiwara D, Toyohara T, Wakahara K, Inagaki N, et al. Nafamostat mesilate, a potent serine protease inhibitor, inhibits airway eosinophilic inflammation and airway epithelial remodeling in a murine model of allergic asthma. J Pharmacol Sci. 2008;108:355–63.PubMedGoogle Scholar
  18. 18.
    Nathan RA, Sorkness CA, Kosinski M, Schatz M, Li JT, Marcus P, et al. Development of the asthma control test: a survey for assessing asthma control. J Allergy Clin Immunol. 2004;113:59–65.PubMedCrossRefGoogle Scholar
  19. 19.
    ATS/ERS recommendations for standardized procedures for the online and offline measurement of exhaled lower respiratory nitric oxide and nasal nitric oxide, 2005. Am J Respir Crit Care Med. 2005; 171: 912–30.Google Scholar
  20. 20.
    Thomas M, Kay S, Pike J, Williams A, Rosenzweig JR, Hillyer EV, et al. The asthma control test (ACT) as a predictor of GINA guideline-defined asthma control: analysis of a multinational cross-sectional survey. Prim Care Respir J. 2009;18:41–9.PubMedCrossRefGoogle Scholar
  21. 21.
    Green RH, Brightling CE, McKenna S, Hargadon B, Parker D, Bradding P, et al. Asthma exacerbations and sputum eosinophil counts: a randomised controlled trial. Lancet. 2002;360:1715–21.PubMedCrossRefGoogle Scholar
  22. 22.
    Mitsuyama K, Sata M. Therapeutic leukocytapheresis in inflammatory bowel disease: clinical efficacy and mechanisms of action. Cytotherapy. 2009;11:229–37.PubMedCrossRefGoogle Scholar
  23. 23.
    Chin AC, Parkos CA. Neutrophil transepithelial migration and epithelial barrier function in IBD: potential targets for inhibiting neutrophil trafficking. Ann NY Acad Sci. 2006;1072:276–87.PubMedCrossRefGoogle Scholar
  24. 24.
    Nemeth T, Mocsai A. The role of neutrophils in autoimmune diseases. Immunol Lett. 2012;143:9–19.PubMedCrossRefGoogle Scholar
  25. 25.
    Yamasaki S, Ueki Y, Nakamura H, Yano M, Matsumoto K, Miyake S, et al. Effect of filtration leukocytapheresis therapy: modulation of white blood cell enzyme activities in patients with rheumatoid arthritis. Artif Organs. 2002;26:378–84.PubMedCrossRefGoogle Scholar
  26. 26.
    Hidaka T, Suzuki K, Matsuki Y, Takamizawa-Matsumoto M, Okada M, Ishizuka T, et al. Changes in CD4+ T lymphocyte subsets in circulating blood and synovial fluid following filtration leukocytapheresis therapy in patients with rheumatoid arthritis. Ther Apher. 1999;3:178–85.PubMedCrossRefGoogle Scholar
  27. 27.
    Fukunaga K, Fukuda Y, Yokoyama Y, Ohnishi K, Kusaka T, Kosaka T, et al. Activated platelets as a possible early marker to predict clinical efficacy of leukocytapheresis in severe ulcerative colitis patients. J Gastroenterol. 2006;41:524–32.PubMedCrossRefGoogle Scholar
  28. 28.
    Okawa-Takatsuji M, Nagatani K, Nakajima K, Itoh K, Kano T, Nagashio C, et al. Recruitment of immature neutrophils in peripheral blood following leukocytapheresis therapy for rheumatoid arthritis. J Clin Apher. 2007;22:323–9.PubMedCrossRefGoogle Scholar
  29. 29.
    Yamaji K, Onuma S, Yasuda M, Kanai Y, Tsuda H, Takasaki Y. Fluctuations in peripheral blood leukocyte and platelet counts and leukocyte recruitment with large volume leukocytapheresis in healthy volunteers. Ther Apher Dial. 2006;10:396–403.PubMedCrossRefGoogle Scholar
  30. 30.
    Hanai H, Iida T, Takeuchi K, Watanabe F, Maruyama Y, Kikuyama M, et al. Decrease of reactive-oxygen-producing granulocytes and release of IL-10 into the peripheral blood following leukocytapheresis in patients with active ulcerative colitis. World J Gastroenterol. 2005;11:3085–90.PubMedGoogle Scholar
  31. 31.
    Borish L, Aarons A, Rumbyrt J, Cvietusa P, Negri J, Wenzel S. Interleukin-10 regulation in normal subjects and patients with asthma. J Allergy Clin Immunol. 1996;97:1288–96.PubMedCrossRefGoogle Scholar
  32. 32.
    Lim S, Crawley E, Woo P, Barnes PJ. Haplotype associated with low interleukin-10 production in patients with severe asthma. Lancet. 1998;352:113.PubMedCrossRefGoogle Scholar
  33. 33.
    Hawrylowicz C, Richards D, Loke TK, Corrigan C, Lee T. A defect in corticosteroid-induced IL-10 production in T lymphocytes from corticosteroid-resistant asthmatic patients. J Allergy Clin Immunol. 2002;109:369–70.PubMedCrossRefGoogle Scholar
  34. 34.
    Mitsuyama K, Yamasaki H, Kuwaki K, Takedatsu H, Sata M. Recent understanding of leukocytapheresis (LCAP) for the treatment of inflammatory bowel disease. Curr Pharm Des. 2009;15:2110–9.PubMedCrossRefGoogle Scholar
  35. 35.
    Davidson A, Diamond B. Autoimmune diseases. N Engl J Med. 2001;345:340–50.PubMedCrossRefGoogle Scholar
  36. 36.
    Marrack P, Kappler J, Kotzin BL. Autoimmune disease: why and where it occurs. Nat Med. 2001;7:899–905.PubMedCrossRefGoogle Scholar
  37. 37.
    O’Shea JJ, Ma A, Lipsky P. Cytokines and autoimmunity. Nat Rev Immunol. 2002;2:37–45.PubMedGoogle Scholar
  38. 38.
    Haldar P, Brightling CE, Hargadon B, Gupta S, Monteiro W, Sousa A, et al. Mepolizumab and exacerbations of refractory eosinophilic asthma. N Engl J Med. 2009;360:973–84.PubMedCentralPubMedCrossRefGoogle Scholar
  39. 39.
    Corren J, Lemanske RF, Hanania NA, Korenblat PE, Parsey MV, Arron JR, et al. Lebrikizumab treatment in adults with asthma. N Engl J Med. 2011;365:1088–98.PubMedCrossRefGoogle Scholar
  40. 40.
    Wenzel S, Ford L, Pearlman D, Spector S, Sher L, Skobieranda F, et al. Dupilumab in persistent asthma with elevated eosinophil levels. N Engl J Med. 2013;368:2455–66.PubMedCrossRefGoogle Scholar
  41. 41.
    Hanania NA, Wenzel S, Rosen K, Hsieh HJ, Mosesova S, Choy DF, et al. Exploring the effects of omalizumab in allergic asthma: an analysis of biomarkers in the EXTRA study. Am J Respir Crit Care Med. 2013;187:804–11.PubMedGoogle Scholar
  42. 42.
    Haldar P, Pavord ID, Shaw DE, Berry MA, Thomas M, Brightling CE, et al. Cluster analysis and clinical asthma phenotypes. Am J Respir Crit Care Med. 2008;178:218–24.PubMedCentralPubMedGoogle Scholar
  43. 43.
    Moore WC, Meyers DA, Wenzel SE, Teague WG, Li H, Li X, et al. Identification of asthma phenotypes using cluster analysis in the Severe Asthma Research Program. Am J Respir Crit Care Med. 2010;181:315–23.PubMedCentralPubMedGoogle Scholar
  44. 44.
    Siroux V, Basagana X, Boudier A, Pin I, Garcia-Aymerich J, Vesin A, et al. Identifying adult asthma phenotypes using a clustering approach. Eur Respir J. 2011;38:310–7.PubMedCrossRefGoogle Scholar
  45. 45.
    Sutherland ER, Goleva E, King TS, Lehman E, Stevens AD, Jackson LP, et al. Cluster analysis of obesity and asthma phenotypes. PLoS ONE. 2012;7:e36631.PubMedCentralPubMedCrossRefGoogle Scholar
  46. 46.
    Lotvall J, Akdis CA, Bacharier LB, Bjermer L, Casale TB, Custovic A, et al. Asthma endotypes: a new approach to classification of disease entities within the asthma syndrome. J Allergy Clin Immunol. 2011;127:355–60.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Basel 2014

Authors and Affiliations

  • Tamotsu Ishizuka
    • 1
    • 2
  • Takeshi Hisada
    • 1
  • Motoaki Hatori
    • 3
  • Akio Koike
    • 4
  • Kikuo Hanabuchi
    • 4
  • Shinichi Matsuzaki
    • 1
  • Yosuke Kamide
    • 1
  • Mitsuyoshi Utsugi
    • 1
  • Haruka Aoki
    • 1
  • Reiko Yoshino
    • 1
  • Noriko Yanagitani
    • 1
  • Yasuhiko Koga
    • 1
  • Akihiro Ono
    • 1
  • Kyoichi Kaira
    • 1
  • Noriaki Sunaga
    • 1
  • Kunio Dobashi
    • 1
  • Takahiro Tsuburai
    • 5
  • Kazuo Akiyama
    • 5
  • Masanobu Yamada
    • 1
  • Kazuhiro Suzuki
    • 3
  • Masatomo Mori
    • 1
  1. 1.Department of Medicine and Molecular ScienceGunma University Graduate School of MedicineMaebashiJapan
  2. 2.Third Department of Internal Medicine, Faculty of Medical SciencesUniversity of FukuiFukuiJapan
  3. 3.Department of UrologyGunma University Graduate School of MedicineMaebashiJapan
  4. 4.Central SupplyGunma University HospitalMaebashiJapan
  5. 5.Clinical Research Center for Allergy and Rheumatology, National Hospital OrganizationSagamihara National HospitalSagamiharaJapan

Personalised recommendations