Inflammation Research

, Volume 63, Issue 8, pp 657–665 | Cite as

Vespa tropica venom suppresses lipopolysaccharide-mediated secretion of pro-inflammatory cyto-chemokines by abrogating nuclear factor-κ B activation in microglia

  • Deepak Kumar Kaushik
  • Menaka Chanu Thounaojam
  • Arinjay Mitra
  • Anirban Basu
Original Research Paper


Objective and design

The present study was aimed to evaluate the anti-inflammatory potentials of Vespa tropica (VT) venom and its isolated peptides. Effects of whole venom and its two peptides (Vt1512 and Vt1386) on lipopolysaccharide (LPS) challenged BV-2 murine microglial cells was evaluated.


Mouse microglial cell line, BV-2 and crude venom extract as well as purified peptides from VT along with LPS from Salmonella enterica were used for the studies.


BV-2 cells were treated with 500 ng/ml of LPS and different doses of crude wasp venom as well as purified peptides.


We used immunoblotting, cytokine bead arrays and fluorescence activated cell sorter (FACS) to evaluate the levels of various proteins, cytokines and reactive oxygen species (ROS).


Our studies suggest that treatment with whole venom significantly reduces oxidative stress and LPS-stimulated activation of microglia. Also, purified peptides from crude venom exhibited potential anti-inflammatory properties. Further, whole venom was found to be targeting Akt and p38 MAPK pathways, leading to suppressed NF-κB phosphorylation in LPS challenged BV-2 cells.


VT venom possesses anti-inflammatory properties and can be further explored for their therapeutic potential in treating various inflammatory conditions of the central nervous system (CNS).


Neuroinflammation Microglia Lipopolysaccharide Wasp venom Cytokines 



The research is funded by core grant from Department of Biotechnology (DBT) to NBRC. Research grant from National Bioresource Development Board, DBT, to Dr. R. Umashankar and Dr. Chandrashekar Krishnappa, University of Agricultural Sciences, Bangalore, India (DBT Grant No. BT/PR8825/NDB/52/53/2007) is gratefully acknowledged. We also acknowledge Prof. P. Balaram and Prof. K. S. Krishnan for insightful suggestions and facilitating the current research.

Conflict of interest

The authors declare that they have no competing interests.


  1. 1.
    Streit WJ, Mrak RE, Griffin WS. Microglia and neuroinflammation: a pathological perspective. J Neuroinflammation. 2004;1:14.PubMedCentralPubMedCrossRefGoogle Scholar
  2. 2.
    Zhong LM, Zong Y, Sun L, Guo JZ, Zhang W, He Y, et al. Resveratrol inhibits inflammatory responses via the mammalian target of rapamycin signaling pathway in cultured LPS-stimulated microglial cells. PLoS One. 2012;7:e32195.PubMedCentralPubMedCrossRefGoogle Scholar
  3. 3.
    Gresa-Arribas N, Vieitez C, Dentesano G, Serratosa J, Saura J, Sola C. Modelling neuroinflammation in vitro: a tool to test the potential neuroprotective effect of anti-inflammatory agents. PLoS One. 2012;7:e45227.PubMedCentralPubMedCrossRefGoogle Scholar
  4. 4.
    Kaushik DK, Gupta M, Das S, Basu A. Kruppel-like factor 4, a novel transcription factor regulates microglial activation and subsequent neuroinflammation. J Neuroinflammation. 2010;7:68.PubMedCentralPubMedCrossRefGoogle Scholar
  5. 5.
    Jang S, Kelley KW, Johnson RW. Luteolin reduces IL-6 production in microglia by inhibiting JNK phosphorylation and activation of AP-1. Proc Natl Acad Sci USA. 2008;105:7534–9.PubMedCentralPubMedCrossRefGoogle Scholar
  6. 6.
    Kaushik DK, Mukhopadhyay R, Kumawat KL, Gupta M, Basu A. Therapeutic targeting of Kruppel-like factor 4 abrogates microglial activation. J Neuroinflammation. 2012;9:57.PubMedCentralPubMedCrossRefGoogle Scholar
  7. 7.
    Min KJ, Choi K, Kwon TK. Withaferin A down-regulates lipopolysaccharide-induced cyclooxygenase-2 expression and PGE2 production through the inhibition of STAT1/3 activation in microglial cells. Int Immunopharmacol. 2011;11:1137–42.PubMedCrossRefGoogle Scholar
  8. 8.
    Park SE, Sapkota K, Kim S, Kim H, Kim SJ. Kaempferol acts through mitogen-activated protein kinases and protein kinase B/AKT to elicit protection in a model of neuroinflammation in BV2 microglial cells. Br J Pharmacol. 2011;164:1008–25.PubMedCentralPubMedCrossRefGoogle Scholar
  9. 9.
    Mendes MA, de Souza BM, Marques MR, Palma MS. Structural and biological characterization of two novel peptides from the venom of the neotropical social wasp Agelaia pallipes pallipes. Toxicon. 2004;44:67–74.PubMedCrossRefGoogle Scholar
  10. 10.
    Schmidt JO, Yamane S, Matsuura M, Starr CK. Hornet venoms: lethalities and lethal capacities. Toxicon. 1986;24:950–4.PubMedCrossRefGoogle Scholar
  11. 11.
    Gawade SP. The effect of venom from the Indian tropical wasp Vespa tropica on nerve-muscle preparations from Drosophila larvae. Toxicon. 1983;21:882–6.PubMedCrossRefGoogle Scholar
  12. 12.
    Ho CL, Chen WC, Lin YL. Structures and biological activities of new wasp venom peptides isolated from the black-bellied hornet (Vespa basalis) venom. Toxicon. 1998;36:609–17.PubMedCrossRefGoogle Scholar
  13. 13.
    Lee KG, Cho HJ, Bae YS, Park KK, Choe JY, Chung IK, et al. Bee venom suppresses LPS-mediated NO/iNOS induction through inhibition of PKC-alpha expression. J Ethnopharmacol. 2009;123:15–21.PubMedCrossRefGoogle Scholar
  14. 14.
    Han S, Lee K, Yeo J, Kweon H, Woo S, Lee M, et al. Effect of honey bee venom on microglial cells nitric oxide and tumor necrosis factor-alpha production stimulated by LPS. J Ethnopharmacol. 2007;111:176–81.PubMedCrossRefGoogle Scholar
  15. 15.
    Moon DO, Park SY, Lee KJ, Heo MS, Kim KC, Kim MO, et al. Bee venom and melittin reduce proinflammatory mediators in lipopolysaccharide-stimulated BV2 microglia. Int Immunopharmacol. 2007;7:1092–101.PubMedCrossRefGoogle Scholar
  16. 16.
    Fang Q, Wang L, Zhu Y, Stanley DW, Chen X, Hu C, et al. Pteromalus puparum venom impairs host cellular immune responses by decreasing expression of its scavenger receptor gene. Insect Biochem Mol Biol. 2011;41:852–62.PubMedCrossRefGoogle Scholar
  17. 17.
    Gupta K, Kumar M, Chandrashekara K, Krishnan KS, Balaram P. Combined electron transfer dissociation-collision-induced dissociation fragmentation in the mass spectrometric distinction of leucine, isoleucine, and hydroxyproline residues in Peptide natural products. J Proteome Res. 2012;11:515–22.PubMedCrossRefGoogle Scholar
  18. 18.
    Yibin G, Jiang Z, Hong Z, Gengfa L, Liangxi W, Guo W, et al. A synthesized cationic tetradecapeptide from hornet venom kills bacteria and neutralizes lipopolysaccharide in vivo and in vitro. Biochem Pharmacol. 2005;70:209–19.PubMedCrossRefGoogle Scholar
  19. 19.
    King TP, Jim SY, Wittkowski KM. Inflammatory role of two venom components of yellow jackets (Vespula vulgaris): a mast cell degranulating peptide mastoparan and phospholipase A1. Int Arch Allergy Immunol. 2003;131:25–32.PubMedCrossRefGoogle Scholar
  20. 20.
    Rocha T, de Barros LL, Fontana K, de Souza BM, Palma MS, da Cruz-Hofling MA. Inflammation and apoptosis induced by mastoparan Polybia-MPII on skeletal muscle. Toxicon. 2010;55:1213–21.PubMedCrossRefGoogle Scholar
  21. 21.
    Kaushik DK, Gupta M, Kumawat KL, Basu A. NLRP3 inflammasome: key mediator of neuroinflammation in murine Japanese encephalitis. PLoS One. 2012;7:e32270.PubMedCentralPubMedCrossRefGoogle Scholar
  22. 22.
    Lull ME, Block ML. Microglial activation and chronic neurodegeneration. Neurotherapeutics. 2010;7:354–65.PubMedCentralPubMedCrossRefGoogle Scholar
  23. 23.
    Hu X, Zhou H, Zhang D, Yang S, Qian L, Wu HM, et al. Clozapine protects dopaminergic neurons from inflammation-induced damage by inhibiting microglial overactivation. J Neuroimmune Pharmacol. 2012;7:187–201.PubMedCentralPubMedCrossRefGoogle Scholar
  24. 24.
    Tan B, Choi RH, Chin TJ, Kaur C, Ling EA. Manipulation of microglial activity as a therapy for Alzheimer’s disease. Front Biosci (Schol Ed). 2012;4:1402–12.CrossRefGoogle Scholar
  25. 25.
    Hjorth E, Freund-Levi Y. Immunomodulation of microglia by docosahexaenoic acid and eicosapentaenoic acid. Curr Opin Clin Nutr Metab Care. 2012;15:134–43.PubMedGoogle Scholar
  26. 26.
    Guo YB, Zheng QY, Chen JH, Cai SF, Cao HW, Zheng J, et al. Effect of mastoparan-1 on lipopolysaccharide-induced acute hepatic injury in mice. Zhonghua Shao Shang Za Zhi. 2009;25:53–6.PubMedGoogle Scholar
  27. 27.
    Chen W, Yang X, Yang X, Zhai L, Lu Z, Liu J, et al. Antimicrobial peptides from the venoms of Vespa bicolor Fabricius. Peptides. 2008;29:1887–92.PubMedCrossRefGoogle Scholar
  28. 28.
    Minghetti L. Cyclooxygenase-2 (COX-2) in inflammatory and degenerative brain diseases. J Neuropathol Exp Neurol. 2004;63:901–10.PubMedGoogle Scholar
  29. 29.
    Calabrese V, Mancuso C, Calvani M, Rizzarelli E, Butterfield DA, Stella AM. Nitric oxide in the central nervous system: neuroprotection versus neurotoxicity. Nat Rev Neurosci. 2007;8:766–75.PubMedCrossRefGoogle Scholar
  30. 30.
    Choi YH, Park HY. Anti-inflammatory effects of spermidine in lipopolysaccharide-stimulated BV2 microglial cells. J Biomed Sci. 2012;19:31.PubMedCentralPubMedCrossRefGoogle Scholar
  31. 31.
    Jung WK, Lee DY, Park C, Choi YH, Choi I, Park SG, et al. Cilostazol is anti-inflammatory in BV2 microglial cells by inactivating nuclear factor-kappaB and inhibiting mitogen-activated protein kinases. Br J Pharmacol. 2010;159:1274–85.PubMedCentralPubMedCrossRefGoogle Scholar
  32. 32.
    Huang D, Han Y, Rani MR, Glabinski A, Trebst C, Sorensen T, et al. Chemokines and chemokine receptors in inflammation of the nervous system: manifold roles and exquisite regulation. Immunol Rev. 2000;177:52–67.PubMedCrossRefGoogle Scholar
  33. 33.
    McManus C, Berman JW, Brett FM, Staunton H, Farrell M, Brosnan CF. MCP-1, MCP-2 and MCP-3 expression in multiple sclerosis lesions: an immunohistochemical and in situ hybridization study. J Neuroimmunol. 1998;86:20–9.PubMedCrossRefGoogle Scholar
  34. 34.
    Tambuyzer BR, Ponsaerts P, Nouwen EJ. Microglia: gatekeepers of central nervous system immunology. J Leukoc Biol. 2009;85:352–70.PubMedGoogle Scholar
  35. 35.
    Rosenberger J, Petrovics G, Buzas B. Oxidative stress induces proorphanin FQ and proenkephalin gene expression in astrocytes through p38- and ERK-MAP kinases and NF-kappaB. J Neurochem. 2001;79:35–44.PubMedCrossRefGoogle Scholar
  36. 36.
    Xing B, Xin T, Hunter RL, Bing G. Pioglitazone inhibition of lipopolysaccharide-induced nitric oxide synthase is associated with altered activity of p38 MAP kinase and PI3 K/Akt. J Neuroinflammation. 2008;5:4.PubMedCentralPubMedCrossRefGoogle Scholar
  37. 37.
    Jang EY, Yang CH, Han MH, Choi YH, Hwang M. Sauchinone suppresses lipopolysaccharide-induced inflammatory responses through Akt signaling in BV2 cells. Int Immunopharmacol. 2012;14:188–94.PubMedCrossRefGoogle Scholar
  38. 38.
    Saponaro C, Cianciulli A, Calvello R, Dragone T, Iacobazzi F, Panaro MA. The PI3 K/Akt pathway is required for LPS activation of microglial cells. Immunopharmacol Immunotoxicol. 2012;34:858–65.PubMedCrossRefGoogle Scholar
  39. 39.
    Park JS, Woo MS, Kim DH, Hyun JW, Kim WK, Lee JC, et al. Anti-inflammatory mechanisms of isoflavone metabolites in lipopolysaccharide-stimulated microglial cells. J Pharmacol Exp Ther. 2007;320:1237–45.PubMedCrossRefGoogle Scholar
  40. 40.
    Nam KN, Son MS, Park JH, Lee EH. Shikonins attenuate microglial inflammatory responses by inhibition of ERK, Akt, and NF-kappaB: neuroprotective implications. Neuropharmacology. 2008;55:819–25.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Basel 2014

Authors and Affiliations

  • Deepak Kumar Kaushik
    • 1
  • Menaka Chanu Thounaojam
    • 1
  • Arinjay Mitra
    • 1
    • 2
  • Anirban Basu
    • 1
  1. 1.National Brain Research CentreGurgaonIndia
  2. 2.Department of ChemistryUniversity of WashingtonWashingtonUSA

Personalised recommendations