Inflammation Research

, Volume 63, Issue 4, pp 255–265 | Cite as

Linking GATA-3 and interleukin-13: implications in asthma

  • Sheikh Rayees
  • Fayaz Malik
  • Syed Imran Bukhari
  • Gurdarshan Singh



Asthma is one of the serious global health problems and cause of huge mortality and morbidity. It is characterized by persistent airway inflammation, airway hyperresponsiveness, increased IgE levels and mucus hypersecretion. Asthma is mediated by dominant Th2 immune response, causing enhanced expression of Th2 cytokines. These cytokines are responsible for the various pathological changes associated with allergic asthma.

Materials and methods

The role of Th2 cells in the pathogenesis of the asthma is primarily mediated through the cytokine IL-13, also produced by type 2 innate lymphoid cells, that comes under the transcriptional regulation of GATA3. In this review we will try to explore the link between IL-13 and GATA3 in the progression and regulation of asthma and its possible role as a therapeutic target.


Inhibition of GATA3 activity or blockade of GATA3 expression may attenuate the interleukin-13 mediated asthma phenotypes. So, GATA3 might be a potential therapeutic target for the treatment of allergic asthma.


Asthma Eosinophils Lymphocytes Airway hypersensitivity IL-13 GATA3 


  1. 1.
    Walsh GM, McDougall CM. The resolution of airway inflammation in asthma and COPD. In: Rossi AG, Sawatzky D, editors. Progress in inflammation research. Basel: Birkhauser Verlag A.G; 2007. p. 159–191.Google Scholar
  2. 2.
    Braman SS. The global burden of asthma. Chest. 2006;130:4S–12S.PubMedGoogle Scholar
  3. 3.
    McGrath KW, Icitovic N, Boushey HA, Lazarus SC, Sutherland ER, Chinchilli VM, Fahy JV. A large subgroup of mild-to-moderate asthma is persistently noneosinophilic. Am J Respir Crit Care. 2012;185:612–9.Google Scholar
  4. 4.
    Anderson GP. Endotyping asthma: new insights into key pathogenic mechanisms in a complex, heterogeneous disease. Lancet. 2008;372:1107–19.PubMedGoogle Scholar
  5. 5.
    Tattersfield AE, Knox AJ, Britton JR, Hall IP. Asthma. Lancet. 2002;360:1313–22.PubMedGoogle Scholar
  6. 6.
    Barnes PJ. Pathophysiology of asthma. Eur Respir Mon. 2003;8:84–113.Google Scholar
  7. 7.
    Payne DN, Rogers AV, Adelroth E, Bandi V, Guntupalli KK, Bush A, Jeffery PK. Early thickening of the reticular basement membrane in children with difficult asthma. Am J Respir Crit Care Med. 2003;167:78–82.PubMedGoogle Scholar
  8. 8.
    Allen D, Adinoff MD, Roger J, Hollister MD. Steroid-induced fractures and bone loss in patients with asthma. N Engl J Med. 1983;309:265–8.Google Scholar
  9. 9.
    Sont JK, Han J, van-Krieken JM, et al. Relationship between the inflammatory infiltrate in bronchial biopsy specimens and clinical severity of asthma in patients treated with inhaled steroids. Thorax. 1996;51:496–502.PubMedCentralPubMedGoogle Scholar
  10. 10.
    Silverman AB. Treatment of steroid dependent asthmatics, US 5405842 A. 1995; 08/187, 915.Google Scholar
  11. 11.
    Comet R, Domingo C, Larrosa M, Morón A, Rué M, Amengual MJ, Marín A. Benefits of low weekly doses of methotrexate in steroid-dependent asthmatic patients. A double-blind, randomized, placebo-controlled study. Respir Med. 2006;100:411–9.PubMedGoogle Scholar
  12. 12.
    Haldar P, Brightling CE, Hargadon B. Mepolizumab and exacerbations of refractory eosinophilic asthma. N Engl J Med. 2009;360:973–84.PubMedGoogle Scholar
  13. 13.
    Kraft M. Asthma phenotypes and interleukin-13—moving closer to personalized medicine. N Engl J Med. 2011;365:1141–4.PubMedGoogle Scholar
  14. 14.
    Antoniu SA, Pitrakinra A. Dual IL-4/IL-13 antagonist for the potential treatment of asthma and eczema. Curr Opin Invest Drugs. 2010;11:1286–94.Google Scholar
  15. 15.
    Woodruff PG, Modrek B, et al. T-helper type 2—driven inflammation defines major subphenotypes of asthma. Am J Respir Crit Care Med. 2009;180:388–95.PubMedCentralPubMedGoogle Scholar
  16. 16.
    Singh D, Richards D, Knowles RG, Schwartz S, Woodcock A, Langley S, O’Connor BJ. Selective Inducible nitric oxide synthase inhibition has no effect on allergen challenge in asthma. Am J Respir Crit Care Med. 2007;176:988–93.PubMedGoogle Scholar
  17. 17.
    Woodruff PG, Boushey HA, Dolganov GM, et al. Genome-wide profiling identifies epithelial cell genes associated with asthma and with treatment response to corticosteroids. Proc Natl Acad Sci USA. 2007;2:15858–63.Google Scholar
  18. 18.
    Wochnik GM, Rüegg J, Abel GA, Schmidt U, Holsboer F, Rein T. FK506-binding proteins 51 and 52 differentially regulate dynein interaction and nuclear translocation of the glucocorticoid receptor in mammalian cells. J Biol Chem. 2005;280:4609–16.PubMedGoogle Scholar
  19. 19.
    Denny WB, Valentine DL, Reynolds PD, Smith DF, Scammell JG. Squirrel monkey immunophilin FKBP51 is a potent inhibitor of glucocorticoid receptor binding. Endocrinology. 2000;141:4107–13.PubMedGoogle Scholar
  20. 20.
    Caramori G, Groneberg D, Ito K, Casolari P, Adcock IM, Papi A. New drugs targeting Th2 lymphocytes in asthma. J Occup Med Toxicol. 2008;3:1–6.Google Scholar
  21. 21.
    Stephen TH, Riccardo P. Treatment strategies for allergy and asthma. Nat Rev Immunol. 2008;8:218–30.Google Scholar
  22. 22.
    Morrisey EE, Ip HS, Lu MM, Parmacek MS. GATA-6: a zinc finger transcription factor that is expressed in multiple cell lineages derived from lateral mesoderm. Dev Biol. 1996;177:309–22.PubMedGoogle Scholar
  23. 23.
    Arceci RJ, King AA, Simon MC, Orkin SH, Wilson DB. Mouse GATA-4: a retinoic acid-inducible GATA-binding transcription factor expressed in endodermally derived tissues and heart. Mol Cell Biol. 1993;13:2235–46.PubMedCentralPubMedGoogle Scholar
  24. 24.
    Ho IC, Vorhees P, Marin N, Oakley BK, Tsai SF, Orkin SH, Leiden JM. Human GATA-3: a lineage-restricted transcription factor that regulates the expression of the T cell receptor alpha gene. EMBO J. 1991;10:1187–92.PubMedCentralPubMedGoogle Scholar
  25. 25.
    Oosterwegel M, Timmerman J, Leiden J, Clevers H. Expression of GATA-3 during lymphocyte differentiation and mouse embryogenesis. Dev Immunol. 1992;3:1–11.PubMedCentralPubMedGoogle Scholar
  26. 26.
    Samson SI, Richard O, Tavian M, Ranson T, Vosshenrich CA, Colucci F, Buer J, Grosveld F, Godin I, Di-Santo JP. GATA-3 promotes maturation. IFN-γ production and liver-specific homing of NK cells. Immunity. 2003;19:701–11.PubMedGoogle Scholar
  27. 27.
    O’Garra A. Cytokines induce the development of functionally heterogeneous T helper cell subsets. Immunity. 1998;8:275–83.PubMedGoogle Scholar
  28. 28.
    Murphy KM, Ouyang W, Farrar JD, Yang J, Ranganath S, Asnagli H, Afkarian M, Murphy TL. Signaling and transcription in T helper development. Annu Rev Immunol. 2000;18:451–94.PubMedGoogle Scholar
  29. 29.
    Glimcher LH, Murphy KM. Lineage commitment in the immune system: the T helper lymphocyte grows up. Genes Dev. 2000;14:1693–711.PubMedGoogle Scholar
  30. 30.
    Wynn TA. IL-13 effector functions. Annu Rev Immunol. 2003;21:425–56.PubMedGoogle Scholar
  31. 31.
    Wills-Karp M. Interleukin-13 in asthma pathogenesis. Immunol Rev. 2004;202:175–90.PubMedGoogle Scholar
  32. 32.
    Caramori G, Lim S, Ito K, Tomita K, Oates T, Jazrawi E, Chung KF, Barnes PJ, Adcock IM. Expression of GATA family of transcription factors in T-cells, monocytes and bronchial biopsies. Eur Respir J. 2001;18:466–73.PubMedGoogle Scholar
  33. 33.
    Wohlfert EA, Grainger JR, Bouladoux N. GATA3 controls Foxp3+ regulatory T cell fate during inflammation in mice. J Clin Invest. 2011;121:4503–15.PubMedCentralPubMedGoogle Scholar
  34. 34.
    Usui T, Nishikomori R, Kitani A, Strober W. GATA-3 suppresses Th1 development by downregulation of Stat4 and not through effects on IL-12R beta2 chain or T-bet. Immunity. 2003;18:415–28.PubMedGoogle Scholar
  35. 35.
    Ouyang W, Ranganath SH, Weindel K, Bhattacharya D, Murphy TL, Sha WC, Murphy KM. Inhibition of Th1 development mediated by GATA-3 through an IL-4-independent mechanism. Immunity. 1998;9:745–55.PubMedGoogle Scholar
  36. 36.
    Ray A, Cohn L. Th2 cells and GATA-3 in asthma: new insights into the regulation of airway inflammation. J Clin Invest. 1999;104:985–93.PubMedCentralPubMedGoogle Scholar
  37. 37.
    McLane MP, Haczku A, Van-de-Rijn M, Weiss C, Ferrante V, MacDonald D, McLane MP, Haczku A, Van-de-Rijn M, Weiss C, Ferrante V, MacDonald D, Renauld JC, Nicolaides NC, Holroyd KJ, Levitt RC. Interleukin-9 promotes allergen-induced eosinophilic inflammation and airway hyper responsiveness in transgenic mice. Am J Respir Cell Mol Biol. 1998;19:713–20.PubMedGoogle Scholar
  38. 38.
    Yao X, Zha W, Song W, et al. Coordinated regulation of IL-4 and IL-13 expression in human T cells: 3C analysis for DNA looping. Biochem Biophys Res Commun. 2012;417:996–1001.PubMedGoogle Scholar
  39. 39.
    Jee YK, Gilmour J, Kelly A, et al. Repression of interleukin-5 transcription by the glucocorticoid receptor targets gata3 signaling and involves histone deacetylase recruitment. J Boil Chem. 2005;280:23243–50.Google Scholar
  40. 40.
    Grogan JL, Mohrs M, Harmon B, Lacy DA, Sedat JW, Locksley RM. Early transcription and silencing of cytokine genes underlie polarization of T helper cell subsets. Immunity. 2001;14:205–15.PubMedGoogle Scholar
  41. 41.
    Yamane H, Zhu J, Paul WE. Independent roles for IL-2 and GATA-3 in stimulating naive CD4 + T cells to generate a Th2-inducing cytokine environment. J Exp Med. 2005;202:793–804.PubMedCentralPubMedGoogle Scholar
  42. 42.
    Avni O, Lee D, Macian F, Szabo SJ, Glimcher LH, Rao A. TH cell differentiation is accompanied by dynamic changes in histone acetylation of cytokine genes. Nat Immunol. 2002;3:643–51.PubMedGoogle Scholar
  43. 43.
    Lee GR, Fields PE, Flavell RA. Regulation of IL-4 gene expression by distal regulatory elements and GATA-3 at the chromatin level. Immunity. 2001;14:447–59.PubMedGoogle Scholar
  44. 44.
    Ouyang W, Löhning M, Gao Z, Assenmacher M, Ranganath S, Radbruch A, Murphy KM. Stat6-independent GATA-3 autoactivation directs IL-4-independent Th2 development and commitment. Immunity. 2007;12:27–37.Google Scholar
  45. 45.
    Amsen D, Antov A, Jankovic D, Sher A, Radtke F, Souabni A, Busslinger M, McCright B, Gridley T, Flavell RA. Direct regulation of Gata3 expression determines the T helper differentiation potential of Notch. Immunity. 2007;27:89–99.PubMedCentralPubMedGoogle Scholar
  46. 46.
    Fang TC, Yashiro-Ohtani Y, Bianco CD, Knoblock DM, Blacklow SC, Pear WS. Notch directly regulates Gata3 expression during T helper 2 cell differentiation. Immunity. 2007;27:100–10.PubMedCentralPubMedGoogle Scholar
  47. 47.
    Asnagli H, Afkarian M, Murphy KM. Cutting edge: identification of an alternative GATA-3 promoter directing tissue-specific gene expression in mouse and human. J Immunol. 2002;168:4268–71.PubMedGoogle Scholar
  48. 48.
    Zhu J, Cote-Sierra J, Guo L, Paul WE. Stat5 activation plays a critical role in Th2 Differentiation. Immunity. 2003;19:739–48.PubMedGoogle Scholar
  49. 49.
    Cote-Sierra J, Foucras G, Guo L, Chiodetti L, Young HA, Hu-Li J, Zhu J, Paul WE. Interleukin 2 plays a central role in Th2 differentiation. Proc Natl Acad Sci. 2004;101:3880–5.PubMedCentralPubMedGoogle Scholar
  50. 50.
    Piper Edward, Brightling Christopher, Niven Robert, et al. A phase II placebo-controlled study of tralokinumab in moderate-to-severe asthma. Eur Respir J. 2013;41:330–8.PubMedCentralPubMedGoogle Scholar
  51. 51.
    Gauvreau GM, Boulet LP, Cockcroft DW, et al. Effects of interleukin-13 blockade on allergen-induced airway responses in mild atopic asthma. Am J Respir Crit Care Med. 2011;183:1007–14.PubMedGoogle Scholar
  52. 52.
    Pueringer RJ, Hunninghake GW. Inflammation and airway reactivity in asthma. Am J Med. 1992;92:32S–8S.PubMedGoogle Scholar
  53. 53.
    White MV. Nasal cholinergic hyper responsiveness in atopic subjects studied out of season. J Allergy Clin Immunol. 1993;92:278–87.PubMedGoogle Scholar
  54. 54.
    Grunig G, Warnock M, Wakil AE, Venkayya R, Brombacher F, Rennick DM, Sheppard D, Mohrs M, Donaldson DD, Locksley RM, Corry DB. Requirement for IL-13 independently of IL-4 in experimental asthma. Science. 1998;282:2261–3.PubMedCentralPubMedGoogle Scholar
  55. 55.
    Karp MW, Luyimbazi J, Xu X, Schofield B, Neben TY, Karp CL, Donaldson DD. Interleukin-13: central mediator of allergic asthma. Science. 1998;282:2258–61.PubMedGoogle Scholar
  56. 56.
    Haczku A, Cao Y, Vass G, Kierstein S, Nath P, Atochina-Vasserman EN, Scan-lon ST, Li L, Griswold DE, Chung KF, Poulain FR, Hawgood S, Beers MF, Crouch EC. IL-4 and IL-13 form a negative feedback circuit with surfactant protein-D in the allergic airway response. J Immunol. 2006;176:3557–65.PubMedGoogle Scholar
  57. 57.
    Madan T, Reid KB, Singh M, Sarma PU, Kishore U. Susceptibility of mice genetically deficient in the surfactant protein (SP)-A or SP-D gene to pulmonary hypersensitivity induced by antigens and allergens of Aspergillus fumigates. J Immunol. 2005;174:6943–54.PubMedGoogle Scholar
  58. 58.
    Walter DM, McIntire JJ, Berry G, McKenzie AN, Donaldson DD, DeKruyff RH, Umetsu DT. Critical role for IL-13 in the development of allergen-induced airway hyperreactivity. J Immunol. 2001;167:4668–75.PubMedGoogle Scholar
  59. 59.
    Heinzmann A, Mao XQ, Akaiwa M, Kreomer RT, Gao PS, Ohshima K, Umeshita R, Abe Y, Braun S, Yamashita T, Roberts MH, Sugimoto R, Arima K, Arinobu Y, Yu B, Kruse S, Enomoto T, Dake Y, Kawai M, Shimazu S, Sasaki S, Adra CN, Kitaichi M, Inoue H, Yamauchi K, Tomichi N, Kurimoto F, Hamasaki N, Hopkin JM, Izuhara K, Shirakawa T, Deichmann KA. Genetic variants of IL-13 signalling and human asthma and atopy. Hum Mol Genet. 2000;9:549–59.PubMedGoogle Scholar
  60. 60.
    Eum SY, Maghni K, et al. IL-13 may mediate allergen-induced hyperresponsiveness independently of IL-5 or eotaxin by effects on airway smooth muscle. Am J Physiol Lung Cell Mol Physiol. 2005;288:576–84.Google Scholar
  61. 61.
    Walsh GM. Novel cytokine-directed therapies for asthma. Discov Med. 2011;11:283–91.PubMedGoogle Scholar
  62. 62.
    Fallon PG, Emson CL, Smith P, McKenzie AN. IL-13 over expression pre-disposes to anaphylaxis following antigen sensitization. J Immunol. 2001;166:2712–6.PubMedGoogle Scholar
  63. 63.
    McKenzie GJ, Emson CL, Bell SE, Anderson S, Fallon P, Zurawski G, Murray R, Grencis R, McKenzie AN. Impaired development of Th2 cells in IL-13-deficient mice. Immunity. 1998;9:423–32.PubMedGoogle Scholar
  64. 64.
    Webb DC, McKenzie AN, Koskinen AM, Yang M, Mattes J, Foster PS. Integrated signals between IL-13, IL-4, and IL-5 regulate airways hyperreactivity. J Immunol. 2000;165:108–13.PubMedGoogle Scholar
  65. 65.
    Taube C, Duez C, Cui ZH, Takeda K, Rha YH, Park JW, Balhorn A, Donaldson DD, Dakhama A, Gelfand EW. The role of IL-13 in established allergic airway disease. J Immunol. 2002;169:6482–9.PubMedGoogle Scholar
  66. 66.
    Luttmann W, Knoechel B, Foerster M, Matthys H, Virchow JC, Kroegel C. Activation of human eosinophils by IL-13. Induction of CD69 surface anti-gen, its relationship to messenger RNA expression, and promotion of cellular viability. J Immunol. 1996;157:1678–83.PubMedGoogle Scholar
  67. 67.
    Pope SM, Brandt EB, Mishra A, Hogan SP, Zimmermann N, Matthaei KI, Foster PS, Rothenberg ME. IL-13 induces eosinophil recruitment into the lung by an IL-5- and eotaxin-dependent mechanism. J Allergy Clin Immunol. 2001;108:594–601.PubMedGoogle Scholar
  68. 68.
    Lam KP, Chu YT, Lee MS, Chen HN, Wang WL, Tok TS, Chin YY, Chen SC, Kuo CH, Hung CH. Inhibitory effects of albuterol and fenoterol on RANTES and IP-10 expression in bronchial epithelial cells. Pediatr Allergy Immunol. 2011;22:431–9.PubMedGoogle Scholar
  69. 69.
    Tomasiak-Łozowska MM, Bodzenta-Łukaszyk A, Tomasiak M, Skiepko R, Zietkowski Z. The role of interleukin 13 and interleukin 5 in asthma. Postepy Hig Med Dosw. 2010;19:146–55.Google Scholar
  70. 70.
    Taku K, Kiyosh T. IL-5- and eosinophil-mediated inflammation: from discovery to therapy. Int Immunol. 2009;21:1303–9.Google Scholar
  71. 71.
    Doucet C, Brouty-Boye D, Pottin-Clemenceau C, Canonica GW, Jasmin C, Azzarone B. Interleukin (IL) 4 and IL-13 act on human lung fibroblasts implication in asthma. J Clin Invest. 1998;101:2129–39.PubMedCentralPubMedGoogle Scholar
  72. 72.
    Fulkerson PC, Fischetti CA, Hassman LM, Nikolaidis NM, Rothenberg ME. Persistent effects induced by IL-13 in the lung. Am J Respir Cell Mol Biol. 2006;35:337–46.PubMedCentralPubMedGoogle Scholar
  73. 73.
    Blease K, Schuh JM, Jakubzick C, Lukacs NW, Kunke SL, Joshi BH, et al. Stat6-deficient mice develop airway hyperresponsiveness and peribronchial fibrosis during chronic fungal asthma. Am J Pathol. 2002;160:481–90.PubMedCentralPubMedGoogle Scholar
  74. 74.
    Kumar RK, Herbert C, Yang M, Koskinen AM, McKenzie AN, Foster PS. Role of interleukin-13 in eosinophil accumulation and airway remodelling in a mouse model of chronic asthma. Clin Exp Allergy. 2002;32:1104–11.PubMedGoogle Scholar
  75. 75.
    Vercelli D, Jabara HH, Arai KI, Geha RS. Induction of human IgE synthesis requires interleukin 4 and T/B interactions involving the T cell receptor/CD3 complex and MHC class II antigens. J Exp Med. 1989;169:1295–307.PubMedGoogle Scholar
  76. 76.
    Punnonen J, Aversa G, Cocks BG, McKenzie ANJ, Menon S, Zurawski G. Interleukin 13 induces interleukin 4-independent IgG4 and IgE synthesis and CD23 expression by human B cells. Proc Natl Acad Sci. 1993;90:3730–4.PubMedCentralPubMedGoogle Scholar
  77. 77.
    Punnonen J, Cocks BG, De Vries JE. IL-4 induces germ-line IgE heavy chain gene transcription in human fetal pre-B cells. Evidence for differential expression of functional IL-4 and IL-13 receptors during B cell ontogeny. J Immunol. 1995;155:4248–54.PubMedGoogle Scholar
  78. 78.
    Whittaker L, Niu N, Temann UA, Stoddard A, Flavell RA, Ray A. Interleukin-13 mediates a fundamental pathway for airway epithelial mucus induced by CD4 T cells and interleukin-9. Am J Respir Cell Mol Biol. 2002;27:593–602.PubMedGoogle Scholar
  79. 79.
    Kuperman DA, Huang X, Koth LL, Chang GH, Dolganov GM, Zhu Z. Direct effects of interleukin-13 on epithelial cells cause airway hyperreactivity and mucus overproduction in asthma. Nat Med. 2002;8:885–9.PubMedGoogle Scholar
  80. 80.
    Atherton HC, Jones G, Danahay H. IL-13-induced changes in the goblet cell density of human bronchial epithelial cell cultures: MAP kinase and phosphatidylinositol 3- kinase regulation. Am J Physiol Lung Cell Mol Physiol. 2003;285:730–9.Google Scholar
  81. 81.
    Finkelman FD, Yang M, Perkins C, Schleifer K, Sproles A, Santeliz J. Suppressive effect of IL-4 on IL-13-induced genes in mouse lung. J Immunol. 2005;174:4630–8.PubMedGoogle Scholar
  82. 82.
    Ramalingam TR, Pesce JT, Sheikh F, Cheever AW, Mentink-Kane MM, Wilson MS. Unique functions of the type II interleukin 4 receptor identified in mice lacking the interleukin 13 receptor alpha1 chain. Nat Immunol. 2008;9:25–33.PubMedCentralPubMedGoogle Scholar
  83. 83.
    Cohn L, Elias JA, Chupp GL. Asthma: mechanisms of disease persistence and progression. Ann Rev Immunol. 2004;22:789–815.Google Scholar
  84. 84.
    Hohlfeld JM, Erpenbeck VJ, Krug N. Surfactant proteins SP-A and SP-D as modulators of the allergic inflammation in asthma. Pathobiology. 2002;70:287–92.PubMedGoogle Scholar
  85. 85.
    Aman MJ, Tayebi N, Obiri NI, et al. cDNA cloning and characterization of the human interleukin 13 receptor αchain. J Biol Chem. 1996;271:29265–70.PubMedGoogle Scholar
  86. 86.
    Miloux B, Laurent P, Bonnin O, et al. Cloning of the human IL-13Rα1 chain and reconstitution with the IL4Rα of a functional IL-4/IL-13 receptor complex. FEBS Lett. 1997;401:163–6.PubMedGoogle Scholar
  87. 87.
    Donaldson DD, Whitters MJ, Fitz LJ. The murine IL-13 receptor α2: molecular cloning, characterization, and comparison with murine IL-13 receptor α1. J Immunol. 1998;161:2317–24.PubMedGoogle Scholar
  88. 88.
    Homer RJ, Zheng T, Chupp G, He S, Zhu Z, Chen Q, Ma B, Hite RD, Gobran LI, Rooney SA, Elias JA. Pulmonary type II cell hypertrophy and pulmonary lipoproteinosis are features of chronic IL-13 exposure. Am J Physiol Lung Cell Mol Physiol. 2002;283:52–9.Google Scholar
  89. 89.
    Zhu Z, Homer RJ, Wang Z, Chen Q, Geba GP, Wang J, Zhang Y, Elias JA. Pulmonary expression of interleukin-13 causes inflammation, mucus hypersecretion, subepithelial fibrosis, physiologic abnormalities, and eotaxin production. J Clin Invest. 1999;103:779–88.PubMedCentralPubMedGoogle Scholar
  90. 90.
    Zhou M, Ouyang W. The function role of GATA-3 in Th1 and Th2 Differentiation. Immunol Res. 2003;28:25–37.PubMedGoogle Scholar
  91. 91.
    Chou J, Provot S, Werb Z. GATA3 in development and cancer differentiation: cells GATA have it. J Cell Physiol. 2010;222:42–9.PubMedCentralPubMedGoogle Scholar
  92. 92.
    Rothenberg EV, Moore JE, Yui MA. Launching the T-cell lineage developmental programme. Nat Rev Immunol. 2008;8:9–21.PubMedCentralPubMedGoogle Scholar
  93. 93.
    Ho IC, Tai TS, Pai SY. GATA3 and the T-cell lineage: essential functions before and after T-helper-2-cell differentiation. Nat Rev Immunol. 2009;9:125–35.PubMedCentralPubMedGoogle Scholar
  94. 94.
    Ansel KM, Djuretic I, Tanasa B, Rao A. Regulation of Th2 differentiation and IL-4 locus accessibility. Ann Rev Immunol. 2006;24:607–56.Google Scholar
  95. 95.
    Nakayama T, Yamashita M. Initiation and maintenance of Th2 cell identity. Curr Opin Immunol. 2008;20:265–71.PubMedGoogle Scholar
  96. 96.
    Kishikawa H, Sun J, Choi A, Miaw SC, Ho IC. The cell type specific expression of the murine IL-13 gene is regulated by GATA-3. J Immunol. 2001;167:4414–20.PubMedGoogle Scholar
  97. 97.
    Maurice D, Hooper J, Lang G, Weston K. c-Myb regulates lineage choice in developing thymocytes via its target gene Gata3. EMBO J. 2007;26:3629–40.PubMedCentralPubMedGoogle Scholar
  98. 98.
    Pai SY. Distinct structural requirements of GATA-3 for the regulation of thymocyte and Th2 cell differentiation. J Immunol. 2008;180:1050–9.PubMedGoogle Scholar
  99. 99.
    Zhao X. Interaction between GATA-3 and the transcriptional co regulator Pias1 is important for the regulation of Th2 immune responses. J Immunol. 2007;179:8297–304.PubMedGoogle Scholar
  100. 100.
    Zurawski G, de Vries JE. Interleukin 13, an interleukin-4 like cytokine that acts on monocytes and B cells, but not on T cells. Immunol Today. 1994;15:19–26.PubMedGoogle Scholar
  101. 101.
    Woerly G, Lacy P, Younes AB. Human eosinophils express and release IL-13 following CD28-dependent activation. Jour Leukoc Biol. 2002;72:769–79.Google Scholar
  102. 102.
    Akbari O, Stock P, Meyer E. Essential role of NKT cells producing IL-4 and IL-13 in the development of allergen-induced airway hyperreactivity. Nat Med. 2003;9:582–8.PubMedGoogle Scholar
  103. 103.
    Guo L, Wei G, Zhu J, Liao W, Leonard WL, Zhao K, Paul W. IL-1 family members and STAT activators induce cytokine production by Th2, Th17, and Th1 cells. PNAS. 2009;106:13463–8.PubMedCentralPubMedGoogle Scholar
  104. 104.
    Chang YJ, Kim HY, Albacker LA, et al. Innate lymphoid cells mediate influenza-induced airway hyper-reactivity independently of adaptive immunity. Nat Immunol. 2011;12:631–8.PubMedCentralPubMedGoogle Scholar
  105. 105.
    Mjosberg JM, Trifari S, Crellin NK, et al. Human IL-25- and IL-33-responsive type 2 innate lymphoid cells are defined by expression of CRTH2 and CD161. Nat Immunol. 2011;12:1055–62.PubMedGoogle Scholar
  106. 106.
    Klein-Wolterink RG, Serafini N, van Nimwegen M, et al. Essential, dose-dependent role for the transcription factor Gata3 in the development of IL-5+ and IL-13+ type 2 innate lymphoid cells. Proc Natl Acad Sci USA. 2013;110:10240–1025.PubMedCentralPubMedGoogle Scholar
  107. 107.
    Zhang DH, Yang L, Cohn L. Inhibition of allergic inflammation in a murine model of asthma by expression of a dominant negative mutant of GATA-3. Immunity. 1999;11:473–82.PubMedGoogle Scholar
  108. 108.
    Takemoto N, Kamogawa Y, Jun-Lee H, Kurata H, Arai KI. A O’Garra, N Arai, S Miyatake, Chromatin remodeling at the IL-4/IL-13 intergenic regulatory region for Th2-specific cytokine gene cluster. J Immunol. 2000;165:6687–91.PubMedGoogle Scholar
  109. 109.
    Lee HJ, Takemoto N, Kurata HY, et al. GATA-3 induces T helper cell type 2 (Th2) cytokine expression and chromatin remodeling in committed Th1 cells. J Exp Med. 2000;192:105–15.PubMedCentralPubMedGoogle Scholar
  110. 110.
    Cecile LB, Cecelia DT, Iman M, Paul-Henri R, Max-Audit I. Interleukin-13 gene expression is regulated by gata-3 in T cells. J Biol Chem. 2002;277:18313–21.Google Scholar
  111. 111.
    Zhang DH, Yang L, Ray A. Differential responsiveness of the IL-5 and IL-4 genes to transcription factor GATA-3. J Immunol. 1998;161:3817–21.PubMedGoogle Scholar
  112. 112.
    Yamashita M, Ukai-Tadenuma M, Kimura M. Identification of a conserved GATA3 response element upstream proximal from the interleukin-13 gene locus. J Biol Chem. 2002;277:42399–408.PubMedGoogle Scholar
  113. 113.
    Maneechotesuwan K, Xin Y, Ito K, et al. Regulation of Th2 cytokine genes by p38 MAPK-mediated phosphorylation of GATA-3. J Immunol. 2007;178:2491–8.PubMedGoogle Scholar
  114. 114.
    Nakamura Y, Hoshino M. Th2 cytokines and associated transcription factors as therapeutic targets in asthma. Curr Drug Targets Inflamm Allergy. 2005;4:267–70.PubMedGoogle Scholar

Copyright information

© Springer Basel 2013

Authors and Affiliations

  • Sheikh Rayees
    • 1
  • Fayaz Malik
    • 2
  • Syed Imran Bukhari
    • 3
  • Gurdarshan Singh
    • 1
    • 4
  1. 1.Pharmacology DivisionIndian Institute of Integrative Medicine (CSIR)JammuIndia
  2. 2.Experimental Breast Cancer Research LaboratoryUniversity of MichiganAnn ArborUSA
  3. 3.Department of BiotechnologyUniversity of JammuJammuIndia
  4. 4.PK-PD Toxicology DivisionIndian Institute of Integrative Medicine (CSIR)JammuIndia

Personalised recommendations