Inflammation Research

, Volume 63, Issue 3, pp 207–215 | Cite as

Opioid signaling in mast cells regulates injury responses associated with heterotopic ossification

  • Lixin Kan
  • Amelia A. Mutso
  • Tammy L. McGuire
  • Apkar Vania Apkarian
  • John A. Kessler
Original Research Paper



Previous studies found that neuron specific enolase promoter (Nse-BMP4) transgenic mice have increased expression of the nociceptive mediator, substance P and exaggerated local injury responses associated with heterotopic ossification (HO). It is of interest great to know the pain responses in these mice and how the opioid signaling is involved in the downstream events such as mast cell (MC) activation.

Materials and methods

This study utilized a transgenic mouse model of HO in which BMP4 is expressed under the control of the Nse-BMP4. The tactile sensitivity and the cold sensitivity of the mice were measured in a classic inflammatory pain model (carrageenan solution injected into the plantar surface of the left hind paw). The MC activation and the expression profiles of different components in the opioid signaling were demonstrated through routine histology and immunohistochemistry and Western blotting, in the superficial and deep muscle injury models.


We found that the pain responses in these mice were paradoxically attenuated or unchanged, and we also found increased expression of both Methionine Enkephalin (Met-Enk), and the μ-opioid receptor (MOR). Met-Enk and MOR both co-localized within activated MCs in limb tissues. Further, Nse-BMP4;MOR−/− double mutant mice showed attenuated MC activation and had a significant reduction in HO formation in response to injuries.


These observations suggest that opioid signaling may play a key role in MC activation and the downstream inflammatory responses associated with HO. In addition to providing insight into the role of MC activation and associated injury responses in HO, these findings suggest opioid signaling as a potential therapeutic target in HO and possibly others disorders involving MC activation.


Mast cell (MC) Bone morphogenetic protein (BMP) Heterotopic ossification (HO) Substance P (SP) μ-Opioid receptor (MOR) Methionine enkephalin (Met-Enk) 



We appreciate the help from many members of the Kessler Laboratory. LK was supported in part by grants from The Center for Research in FOP and Related Disorders of the University of Pennsylvania School of Medicine, and by NIH grant NS 20013 to JAK, and NS057704 to AVA.

Supplementary material

11_2013_690_MOESM1_ESM.jpg (145 kb)
Supplementary material 1 (JPEG 144 kb)
11_2013_690_MOESM2_ESM.jpg (79 kb)
Supplementary material 2 (JPEG 78 kb)
11_2013_690_MOESM3_ESM.jpg (291 kb)
Supplementary material 3 (JPEG 290 kb)
11_2013_690_MOESM4_ESM.jpg (193 kb)
Supplementary material 4 (JPEG 193 kb)
11_2013_690_MOESM5_ESM.jpg (112 kb)
Supplementary material 5 (JPEG 112 kb)
11_2013_690_MOESM6_ESM.jpg (114 kb)
Supplementary material 6 (JPEG 114 kb)
11_2013_690_MOESM7_ESM.jpg (177 kb)
Supplementary material 7 (JPEG 177 kb)
11_2013_690_MOESM8_ESM.jpg (291 kb)
Supplementary material 8 (JPEG 291 kb)


  1. 1.
    Ramalho LS, Oliveira LF, Cavellani CL, Ferraz ML, de Oliveira FA, Miranda Correa RR, et al. Role of mast cell chymase and tryptase in the progression of atherosclerosis: study in 44 autopsied cases. Ann Diagn Pathol. 2013;17(1):28–31. doi: 10.1016/j.anndiagpath.2012.04.007.PubMedCrossRefGoogle Scholar
  2. 2.
    Huang P, Liu D, Gan X, Zhang R, Gao W, Xia Z, et al. Mast cells activation contribute to small intestinal ischemia reperfusion induced acute lung injury in rats. Injury. 2012;43(8):1250–6. doi: 10.1016/j.injury.2011.12.027.PubMedCrossRefGoogle Scholar
  3. 3.
    Costanza M, Colombo MP, Pedotti R. Mast cells in the pathogenesis of multiple sclerosis and experimental autoimmune encephalomyelitis. Int J Mol Sci. 2012;13(11):15107–25. doi: 10.3390/ijms131115107.PubMedCentralPubMedCrossRefGoogle Scholar
  4. 4.
    Lv J, Huang Y, Zhu S, Yang G, Zhang Y, Leng J, et al. MCP-1-induced histamine release from mast cells is associated with development of interstitial cystitis/bladder pain syndrome in rat models. Mediators Inflamm. 2012;2012:358184. doi: 10.1155/2012/358184.PubMedCentralPubMedGoogle Scholar
  5. 5.
    Moalem G, Tracey DJ. Immune and inflammatory mechanisms in neuropathic pain. Brain Res Rev. 2006;51(2):240–64. doi: 10.1016/j.brainresrev.2005.11.004.PubMedCrossRefGoogle Scholar
  6. 6.
    Theoharides TC, Angelidou A, Alysandratos KD, Zhang B, Asadi S, Francis K, et al. Mast cell activation and autism. Biochim Biophys Acta. 2012;1822(1):34–41. doi: 10.1016/j.bbadis.2010.12.017.PubMedCrossRefGoogle Scholar
  7. 7.
    Niemi K, Baumann MH, Kovanen PT, Eklund KK. Serum amyloid A (SAA) activates human mast cells which leads into degradation of SAA and generation of an amyloidogenic SAA fragment. Biochim Biophys Acta. 2006;1762(4):424–30. doi: 10.1016/j.bbadis.2006.01.001.PubMedCrossRefGoogle Scholar
  8. 8.
    Anand P, Singh B, Jaggi AS, Singh N. Mast cells: an expanding pathophysiological role from allergy to other disorders. Naunyn Schmiedebergs Arch Pharmacol. 2012;385(7):657–70. doi: 10.1007/s00210-012-0757-8.PubMedCrossRefGoogle Scholar
  9. 9.
    Kan L, Lounev VY, Pignolo RJ, Duan L, Liu Y, Stock SR, et al. Substance P signaling mediates BMP-dependent heterotopic ossification. J Cell Biochem. 2011;112(10):2759–72. doi: 10.1002/jcb.23259.PubMedCentralPubMedCrossRefGoogle Scholar
  10. 10.
    Gannon FH, Glaser D, Caron R, Thompson LD, Shore EM, Kaplan FS. Mast cell involvement in fibrodysplasia ossificans progressiva. Hum Pathol. 2001;32(8):842–8. doi: 10.1053/hupa.2001.26464.PubMedCrossRefGoogle Scholar
  11. 11.
    Kumar V, Sharma A. Mast cells: emerging sentinel innate immune cells with diverse role in immunity. Mol Immunol. 2010;48(1–3):14–25. doi: 10.1016/j.molimm.2010.07.009.PubMedCrossRefGoogle Scholar
  12. 12.
    Brooks J, Tracey I. From nociception to pain perception: imaging the spinal and supraspinal pathways. J Anat. 2005;207(1):19–33. doi: 10.1111/j.1469-7580.2005.00428.x.PubMedCrossRefGoogle Scholar
  13. 13.
    De Felipe C, Herrero JF, O’Brien JA, Palmer JA, Doyle CA, Smith AJ, et al. Altered nociception, analgesia and aggression in mice lacking the receptor for substance P. Nature. 1998;392(6674):394–7. doi: 10.1038/32904.PubMedCrossRefGoogle Scholar
  14. 14.
    Cao YQ, Mantyh PW, Carlson EJ, Gillespie AM, Epstein CJ, Basbaum AI. Primary afferent tachykinins are required to experience moderate to intense pain. Nature. 1998;392(6674):390–4. doi: 10.1038/32897.PubMedCrossRefGoogle Scholar
  15. 15.
    Al-Hasani R, Bruchas MR. Molecular mechanisms of opioid receptor-dependent signaling and behavior. Anesthesiology. 2011;115(6):1363–81. doi: 10.1097/ALN.0b013e318238bba6.PubMedCentralPubMedGoogle Scholar
  16. 16.
    Ossipov MH, Dussor GO, Porreca F. Central modulation of pain. J Clin Invest. 2010;120(11):3779–87. doi: 10.1172/JCI43766.PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    Ren K, Dubner R. Interactions between the immune and nervous systems in pain. Nat Med. 2010;16(11):1267–76. doi: 10.1038/nm.2234.PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    Tramullas M, Lantero A, Diaz A, Morchon N, Merino D, Villar A, et al. BAMBI (bone morphogenetic protein and activin membrane-bound inhibitor) reveals the involvement of the transforming growth factor-beta family in pain modulation. J Neurosci. 2010;30(4):1502–11. doi: 10.1523/JNEUROSCI.2584-09.2010.PubMedCrossRefGoogle Scholar
  19. 19.
    Kitterman JA, Strober JB, Kan L, Rocke DM, Cali A, Peeper J, et al. Neurological symptoms in individuals with fibrodysplasia ossificans progressiva. J Neurol. 2012;259(12):2636–43. doi: 10.1007/s00415-012-6562-y.Google Scholar
  20. 20.
    Chaplan SR, Bach FW, Pogrel JW, Chung JM, Yaksh TL. Quantitative assessment of tactile allodynia in the rat paw. J Neurosci Methods. 1994;53(1):55–63.PubMedCrossRefGoogle Scholar
  21. 21.
    Choi Y, Yoon YW, Na HS, Kim SH, Chung JM. Behavioral signs of ongoing pain and cold allodynia in a rat model of neuropathic pain. Pain. 1994;59(3):369–76.PubMedCrossRefGoogle Scholar
  22. 22.
    Rocha AC, Fernandes ES, Quintao NL, Campos MM, Calixto JB. Relevance of tumour necrosis factor-alpha for the inflammatory and nociceptive responses evoked by carrageenan in the mouse paw. Br J Pharmacol. 2006;148(5):688–95. doi: 10.1038/sj.bjp.0706775.PubMedCrossRefGoogle Scholar
  23. 23.
    Langsdorf EF, Mao X, Chang SL. A role for reactive oxygen species in endotoxin-induced elevation of MOR expression in the nervous and immune systems. J Neuroimmunol. 2011;236(1–2):57–64. doi: 10.1016/j.jneuroim.2011.05.009.PubMedCentralPubMedCrossRefGoogle Scholar
  24. 24.
    Assis MA, Collino C, Figuerola Mde L, Sotomayor C, Cancela LM. Amphetamine triggers an increase in met-enkephalin simultaneously in brain areas and immune cells. J Neuroimmunol. 2006;178(1–2):62–75. doi: 10.1016/j.jneuroim.2006.05.009.PubMedCrossRefGoogle Scholar
  25. 25.
    Huang J, Xu J, Pang S, Bai B, Yan B. Age-related decrease of the LAMP-2 gene expression in human leukocytes. Clin Biochem. 2012;45(15):1229–32. doi: 10.1016/j.clinbiochem.2012.06.016.PubMedCrossRefGoogle Scholar
  26. 26.
    Kuehn HS, Gilfillan AM. G protein-coupled receptors and the modification of FcepsilonRI-mediated mast cell activation. Immunol Lett. 2007;113(2):59–69. doi: 10.1016/j.imlet.2007.08.007.PubMedCentralPubMedCrossRefGoogle Scholar
  27. 27.
    Klinker JF, Seifert R. Morphine and muscle relaxants are receptor-independent G-protein activators and cromolyn is an inhibitor of stimulated G-protein activity. Inflamm Res. 1997;46(2):46–50.PubMedCrossRefGoogle Scholar
  28. 28.
    Blunk JA, Schmelz M, Zeck S, Skov P, Likar R, Koppert W. Opioid-induced mast cell activation and vascular responses is not mediated by mu-opioid receptors: an in vivo microdialysis study in human skin. Anesth Analg. 2004;98(2):364–70 table of contents.PubMedCrossRefGoogle Scholar
  29. 29.
    Poonawala T, Levay-Young BK, Hebbel RP, Gupta K. Opioids heal ischemic wounds in the rat. Wound repair and regeneration : official publication of the Wound Healing Society [and] the European Tissue Repair. Wound Repair Regen. 2005;13(2):165–74. doi: 10.1111/j.1067-1927.2005.130207.x.PubMedCrossRefGoogle Scholar
  30. 30.
    Rook JM, McCarson KE. Delay of cutaneous wound closure by morphine via local blockade of peripheral tachykinin release. Biochem Pharmacol. 2007;74(5):752–7. doi: 10.1016/j.bcp.2007.06.005.PubMedCentralPubMedCrossRefGoogle Scholar
  31. 31.
    Cao T, Grant AD, Gerard NP, Brain SD. Lack of a significant effect of deletion of the tachykinin neurokinin-1 receptor on wound healing in mouse skin. Neuroscience. 2001;108(4):695–700.PubMedCrossRefGoogle Scholar
  32. 32.
    Ruck P, Horny HP, Kaiserling E. Immunoreactivity of human tissue mast cells: nonspecific binding of primary antibodies against regulatory peptides by ionic linkage. J Histochem Cytochem. 1990;38(6):859–67.PubMedCrossRefGoogle Scholar
  33. 33.
    Liu YQ, Qiu F, Qiu CY, Cai Q, Zou P, Wu H, et al. Cannabinoids inhibit acid-sensing ion channel currents in rat dorsal root ganglion neurons. PLOS One. 2012;7(9):e45531. doi: 10.1371/journal.pone.0045531.PubMedCentralPubMedCrossRefGoogle Scholar
  34. 34.
    Lin CC, Chen WN, Chen CJ, Lin YW, Zimmer A, Chen CC. An antinociceptive role for substance P in acid-induced chronic muscle pain. Proc Natl Acad Sci USA. 2012;109(2):E76–83. doi: 10.1073/pnas.1108903108.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Basel 2013

Authors and Affiliations

  • Lixin Kan
    • 1
    • 3
  • Amelia A. Mutso
    • 2
  • Tammy L. McGuire
    • 1
  • Apkar Vania Apkarian
    • 2
  • John A. Kessler
    • 1
  1. 1.Department of NeurologyNorthwestern UniversityChicagoUSA
  2. 2.Departments of PhysiologyNorthwestern UniversityChicagoUSA
  3. 3.Basic Medical College, Anhui Medical UniversityShushan, HefeiChina

Personalised recommendations