Inflammation Research

, Volume 62, Issue 11, pp 971–980 | Cite as

Therapeutic potential of biodegradable microparticles containing Punica granatum L. (pomegranate) in murine model of asthma

  • Jéssica F. F. de Oliveira
  • Diego V. Garreto
  • Mayara C. P. da Silva
  • Thiare S. Fortes
  • Rejane B. de Oliveira
  • Flávia R. F. Nascimento
  • Fernando B. Da Costa
  • Marcos A. G. Grisotto
  • Roberto NicoleteEmail author
Original Research Paper


Objective and design

Among the options for treatment of diseases affecting the respiratory system, especially asthma, drug delivering systems for intranasal application represent an important therapeutic approach at the site of inflammation. The present study aimed to evaluate the therapeutic effect of biodegradable microparticles formed by poly lactic-co-glycolic acid (PLGA) containing encapsulated pomegranate extract on a murine model of asthma.


The extract was acquired from the leaves of P. granatum and characterized qualitatively by HPLC. A w/o/w emulsion solvent extraction–evaporation method was chosen to prepare the microparticles containing pomegranate encapsulated extract (MP).


OVA-sensitized BALB/c mice were used as asthma model and treated with dexamethasone and P. granatum extract in solution form or encapsulated into microparticles.


MP were able to inhibit leukocytes’ recruitment to bronchoalveolar fluid, especially, eosinophils, decreasing cytokines (IL-1β and IL-5) and protein levels in the lungs.


This approach can be used as an alternative/supplementary therapy based on the biological effects of P. granatum for managing inflammatory processes, especially those with pulmonary complications.


Punica granatum L. Inflammation Asthma Microparticles Poly(lactic-co-glycolic acid) 



This study was supported by Fundação de Amparo à Pesquisa e ao Desenvolvimento Científico e Tecnológico do Maranhão (FAPEMA) and Universidade Ceuma, São Luis, Maranhão. We would like to thank the technician Ana Cleia Pestana from the Universidade Ceuma for the assistance in the histological sections.


  1. 1.
    Barnes PJ. Pathophysiology of asthma. Eur Respir Mon. 2003;8:84–113.Google Scholar
  2. 2.
    Tattersfield AE, Knox AJ, Britton JR, Hall IP. Asthma. Lancet. 2002;360:1313–22.PubMedCrossRefGoogle Scholar
  3. 3.
    Barnes PJ. New drugs for asthma. Nat Rev Drug Discov. 2004;3:831–44.PubMedCrossRefGoogle Scholar
  4. 4.
    Yang EJ, Lee JS, Yun CY, Kim JH, Kim JS, Kim DH, Kim IS. Inhibitory effects of Duchesnea chrysantha extract on ovalbumin-induced lung inflammation in a mouse model of asthma. J Ethnopharmacol. 2008;118:102–7.PubMedCrossRefGoogle Scholar
  5. 5.
    Yuk JE, Woo JS, Yun CY, Lee JS, Kim JH, Song GY, Yang EJ, Hur IK, Kim IS. Effects of lactose-β-sitosterol and β-sitosterol on ovalbumin-induced lung inflammation in actively sensitized mice. Int Immunopharmacol. 2007;7:1517–27.PubMedCrossRefGoogle Scholar
  6. 6.
    Clardy J, Walsh C. Lessons from natural molecules. Nature. 2004;432:829–37.PubMedCrossRefGoogle Scholar
  7. 7.
    Verpoorte R. Exploration of nature’s chemodiversity: the role of secondary metabolites as leads in drug development. Drug Discov Today. 1999;3:232–8.CrossRefGoogle Scholar
  8. 8.
    Koehn FE, Carter GT. The evolving role of natural products in drug discovery. Nat Rev Drug Discov. 2005;4:206–20.PubMedCrossRefGoogle Scholar
  9. 9.
    Rogerio AP, Fontanari C, Borducchi E, Keller AC, Russo M, Soares EG, Albuquerque DA, Faccioli LH. Anti-inflammatory effects of Lafoensia pacari and ellagic acid in a murine model of asthma. Eur J Pharmacol. 2008;580:262–70.PubMedCrossRefGoogle Scholar
  10. 10.
    Rogerio AP. SÁ-NUNES A, Faccioli LH. The activity of medicinal plants and secondary metabolites on eosinophilic inflammation. Pharmacol Res. 2010;62:298–307.PubMedCrossRefGoogle Scholar
  11. 11.
    Jurenka JS. Therapeutic applications of pomegranate (Punica granatum L.): a review. Altern Med Rev. 2008;13:128–44.PubMedGoogle Scholar
  12. 12.
    Fischer UA, Carle R, Kammerer DR. Identification and quantification of phenolic compounds from pomegranate (Punica granatum L.) peel, mesocarp, aril and differently produced juices by HPLC-DAD–ESI/MSn. Food Chem. 2011;127:807–21.PubMedCrossRefGoogle Scholar
  13. 13.
    Lansky EP, Newman RA. Punica granatum (pomegranate) and its potential for prevention and treatment of inflammation and cancer. J Ethnopharmacol. 2007;109:177–206.PubMedCrossRefGoogle Scholar
  14. 14.
    Lansky E, Shubert S, Newman I. Pharmacological and therapeutic properties of pomegranate. CIHEAM–Options Mediterraneennes. 2004; 231–235.Google Scholar
  15. 15.
    Lee SI, Kim BS, Kim KS, Lee S, Shin KS, Lim JS. Immune-suppressive activity of punicalagin via inhibition of NFAT activation. Biochem Biophys Res Commun. 2008;371:799–803.PubMedCrossRefGoogle Scholar
  16. 16.
    Romier B, Van De Walle J, During A, Larondelle Y, Schneider YJ. Modulation of signalling nuclear factor-kappaB activation pathway by polyphenols in human intestinal Caco-2 cells. Br J Nutr. 2008;100:542–51.PubMedCrossRefGoogle Scholar
  17. 17.
    Nicolete R, Lima KM, Rodrigues Júnior JM, Baruffi MD, Medeiros AI, Bentley MVLB, Silva CL, Faccioli LH. In vitro and in vivo activities of leukotrienes B4-loaded biodegradable microspheres. Prostaglandins Other Lipid Mediators. 2007;83:121–9.PubMedCrossRefGoogle Scholar
  18. 18.
    Nicolete R, Rius C, Piqueras L, Jose PJ, Sorgi CA, Soares EG, Sanz MJ, Faccioli LH. Leukotriene B4-loaded microspheres: a new therapeutic strategy to modulate cell activation. BMC Immunol. 2008;9:1–11.CrossRefGoogle Scholar
  19. 19.
    Oh YJ, Lee J, Seo JY, Rhim T, Kim S, Yoon HJ, Lee KY. Preparation of budesonide-loaded porous PLGA microparticles and their therapeutic efficacy in a murine asthma model. J Controlled Release. 2011;150:56–62.CrossRefGoogle Scholar
  20. 20.
    Sung JC, Pulliam BL, Edwards DA. Nanoparticles for drug delivery to the lungs. Trends Biotechnol. 2007;25:563–70.PubMedCrossRefGoogle Scholar
  21. 21.
    Pilcer G, Amighi K. Formulation strategy and use of excipients in pulmonary drug delivery. Int J Pharm. 2010;392:1–19.PubMedCrossRefGoogle Scholar
  22. 22.
    Bekir J, Mars M, Souchard JP, Bouajila J. Assessment of antioxidant, anti-inflammatory, anti-cholinesterase and cytotoxic activities of pomegranate (Punica granatum) leaves. Food Chem Toxicol. 2013;55:470–5.PubMedCrossRefGoogle Scholar
  23. 23.
    Gil MI, Tomás-Barberán FA, Hess-Pierce B, Holcroft DM, Kader AA. Antioxidant Activity of Pomegranate Juice and Its Relationship with Phenolic Composition and Processing. J Agric Food Chem. 2000;48:4581–9.PubMedCrossRefGoogle Scholar
  24. 24.
    Ismail T, Sestili P, Akhtar S. Pomegranate peel and fruit extracts: a review of potential anti-inflammatory and anti-infective effects. J Ethnopharmacol. 2012;143:397–405.PubMedCrossRefGoogle Scholar
  25. 25.
    Wager S, Lundblad LKA, Ekman M, Irvin CG, Bates JHT. The allergic mouse model of asthma: normal smooth muscle in an abnormal lung? J Appl Physiol. 2004;96:2019–27.CrossRefGoogle Scholar
  26. 26.
    Nicolete R, Secatto A, Pereira PAT, Soares EG, Faccioli LH. Leukotriene B4-loaded microspheres as a new approach to enhance antimicrobial responses in Histoplasma capsulatum-infected mice. Int J Antimicr Agets. 2009;4:365–9.CrossRefGoogle Scholar
  27. 27.
    Cook-Mills JM, Deem TL. Active participation of endothelial cells in inflammation. J Leukoc Biol. 2005;77:487–95.PubMedCrossRefGoogle Scholar
  28. 28.
    Balwani S, Nandi D, Jaisankar P, Ghosh B. 2-Methyl-pyran-4-one-3-O-β-D-glucopyranoside isolated from leaves of Punica granatum inhibits the TNFα-induced cell adhesion molecules expression by blocking nuclear transcription factor-кB (NF-кB). Biochimie. 2011;93:921–30.PubMedCrossRefGoogle Scholar
  29. 29.
    Nicolete R, Santos DF, Faccioli LH. The uptake of PLGA micro or nanoparticles by macrophages provokes distinct in vitro inflammatory response. Int Immunopharmacol. 2011;11:1557–63.PubMedCrossRefGoogle Scholar
  30. 30.
    Whelan R, Kim C, Chen M, Leiter J, Grunstein MM, Hakonarson H. Role and regulation of interleukin-1 molecules in pro-asthmatic sensitised airway smooth muscle. Eur Respir J. 2004;24:559–67.PubMedCrossRefGoogle Scholar
  31. 31.
    Faccioli LH, Mokwa VF, Silva CL, Rocha GM, Araujo JI, Nahori MA, Vargaftig BB. IL-5 drives eosinophils from bone marrow to blood and tissues in a guinea-pig model of visceral larva migrans syndrome. Mediators Inflamm. 1996;5:24–31.PubMedCrossRefGoogle Scholar
  32. 32.
    Rogerio AP, Sá-Nunes A, Albuquerque DA, Anibal FF, Medeiros AI, Machado ER, Souza AO, Prado JC Jr, Faccioli LH. Lafoensia pacari extract inhibits IL-5 production in toxocariasis. Parasite Immunol. 2003;25:393–400.PubMedCrossRefGoogle Scholar
  33. 33.
    Lampinen M, Carlson M, Hakansson LD, Venge P. Cytokine-regulated accumulation of eosinophils in inflammatory disease. Allergy. 2004;59:793–805.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Basel 2013

Authors and Affiliations

  • Jéssica F. F. de Oliveira
    • 1
  • Diego V. Garreto
    • 2
  • Mayara C. P. da Silva
    • 3
  • Thiare S. Fortes
    • 3
  • Rejane B. de Oliveira
    • 4
  • Flávia R. F. Nascimento
    • 3
  • Fernando B. Da Costa
    • 4
  • Marcos A. G. Grisotto
    • 1
  • Roberto Nicolete
    • 1
    • 5
    Email author
  1. 1.Pró-Reitoria de Pós-Graduação, Pesquisa e Extensão, Universidade CEUMA (UNICEUMA)São LuísBrazil
  2. 2.Instituto Florence de EnsinoSão LuísBrazil
  3. 3.Department of Pathology, Laboratory of Immunophysiology, Biological and Health Sciences CenterFederal University of Maranhão (UFMA)São LuísBrazil
  4. 4.Departamento de Ciências Farmacêuticas, Faculdade de Ciências Farmacêuticas de Ribeirão PretoUniversidade de São PauloRibeirão PretoBrazil
  5. 5.Laboratório de Biotecnologia Aplicada à SaúdeFundação Oswaldo Cruz—Fiocruz RondôniaPorto VelhoBrazil

Personalised recommendations