Inflammation Research

, Volume 62, Issue 10, pp 871–877 | Cite as

Molecular mechanisms of the cartilage-specific microRNA-140 in osteoarthritis

  • Rui Zhang
  • Jie Ma
  • Jianfeng YaoEmail author


Osteoarthritis (OA) is the most widespread chronic degenerative joint disorder, characterized by progressive destruction of articular cartilage, subchondral bone alterations, formation of osteophytes and synovitis. MicroRNAs (miRNAs) are a class of endogenous and non-coding single-strand RNAs with a length of about 22 nucleotides, and many of them are evolutionarily conserved. miRNAs have been implicated in the process of development and pathogenesis of diseases, and tissue-specific miRNA functional studies in mice have revealed both pathogenic and protective functions. miRNA-140 (miR-140) was shown to be specifically expressed in cartilage tissues in developing zebrafish and mouse embryos during the development of both long and flat bones. Recently, miR-140 has been reported in many studies to play significant roles in OA pathogenesis. Although the previous results were not always consistent, the molecular mechanisms of the regulation and dual function of miR-140 in cartilage homeostasis and development have been established in previous studies. Further elucidation of the molecular basis of miR-140 will uncover synergistic inhibitory effects of miR-140 and other factors on OA pathogenesis, and provide a novel means of treating OA disease.


MicroRNA-140 Cartilage Osteoarthritis 



This study was supported by funding from the National Natural Science Foundation of China (No. 81272023, No. 81271948, No. 81201426, No. 81201373); the Key Project of International Scientific Cooperation of Shaanxi Province (No. 2013KW25-02) and the Fundamental Research Funds for the Central Universities (No. 2012JDGZ07, No. XJJ2012124).


  1. 1.
    Pelletier JP, Martel-Pelletier J, Altman RD, Ghandur-Mnaymneh L, Howell DS, Woessner JF Jr. Collagenolytic activity and collagen matrix breakdown of the articular cartilage in the Pond-Nuki dog model of osteoarthritis. Arthritis Rheum. 1983;26:866–74.PubMedCrossRefGoogle Scholar
  2. 2.
    Pelletier JP, Martel-Pelletier J, Mehraban F, Malemud CJ. Immunological analysis of proteoglycan structural changes in the early stage of experimental osteoarthritic canine cartilage lesions. J Orthop Res. 1992;10:511–23.PubMedCrossRefGoogle Scholar
  3. 3.
    Goldring MB, Goldring SR. Osteoarthritis. J Cell Physiol. 2007;213:626–34.PubMedCrossRefGoogle Scholar
  4. 4.
    Miyaki S, Asahara H. Macro view of microRNA function in osteoarthritis. Nat Rev Rheumatol. 2012;8:543–52.PubMedCrossRefGoogle Scholar
  5. 5.
    Alcaraz MJ, Megias J, Garcia-Arnandis I, Clerigues V, Guillen MI. New molecular targets for the treatment of osteoarthritis. Biochem Pharmacol. 2010;80:13–21.PubMedCrossRefGoogle Scholar
  6. 6.
    Yu C, Chen WP, Wang XH. MicroRNA in osteoarthritis. J Int Med Res. 2011;39:1–9.PubMedCrossRefGoogle Scholar
  7. 7.
    Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116:281–97.PubMedCrossRefGoogle Scholar
  8. 8.
    Farh KK, Grimson A, Jan C, Lewis BP, Johnston WK, Lim LP, et al. The widespread impact of mammalian MicroRNAs on mRNA repression and evolution. Science. 2005;310:1817–21.PubMedCrossRefGoogle Scholar
  9. 9.
    Han J, Lee Y, Yeom KH, Nam JW, Heo I, Rhee JK, et al. Molecular basis for the recognition of primary microRNAs by the Drosha-DGCR8 complex. Cell. 2006;125:887–901.PubMedCrossRefGoogle Scholar
  10. 10.
    Winter J, Jung S, Keller S, Gregory RI, Diederichs S. Many roads to maturity: microRNA biogenesis pathways and their regulation. Nat Cell Biol. 2009;11:228–34.PubMedCrossRefGoogle Scholar
  11. 11.
    Calin GA, Croce CM. MicroRNA signatures in human cancers. Nat Rev Cancer. 2006;6:857–66.PubMedCrossRefGoogle Scholar
  12. 12.
    Gebauer F, Hentze MW. Molecular mechanisms of translational control. Nat Rev Mol Cell Biol. 2004;5:827–35.PubMedCrossRefGoogle Scholar
  13. 13.
    Lewis BP, Burge CB, Bartel DP. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell. 2005;120:15–20.PubMedCrossRefGoogle Scholar
  14. 14.
    Thum T, Gross C, Fiedler J, Fischer T, Kissler S, Bussen M, et al. MicroRNA-21 contributes to myocardial disease by stimulating MAP kinase signalling in fibroblasts. Nature. 2008;456:980–4.PubMedCrossRefGoogle Scholar
  15. 15.
    Small EM, Olson EN. Pervasive roles of microRNAs in cardiovascular biology. Nature. 2011;469:336–42.PubMedCrossRefGoogle Scholar
  16. 16.
    Park CY, Choi YS, McManus MT. Analysis of microRNA knockouts in mice. Hum Mol Genet. 2010;19:R169–75.PubMedCrossRefGoogle Scholar
  17. 17.
    Harfe BD, McManus MT, Mansfield JH, Hornstein E, Tabin CJ. The RNaseIII enzyme Dicer is required for morphogenesis but not patterning of the vertebrate limb. Proc Natl Acad Sci U S A. 2005;102:10898–903.PubMedCrossRefGoogle Scholar
  18. 18.
    Kobayashi T, Lu J, Cobb BS, Rodda SJ, McMahon AP, Schipani E, et al. Dicer-dependent pathways regulate chondrocyte proliferation and differentiation. Proc Natl Acad Sci U S A. 2008;105:1949–54.PubMedCrossRefGoogle Scholar
  19. 19.
    Aigner T, Soeder S, Haag J. IL-1beta and BMPs–interactive players of cartilage matrix degradation and regeneration. Eur Cell Mater. 2006;12:49–56 Discussion 56.PubMedGoogle Scholar
  20. 20.
    Lotz MK, Kraus VB. New developments in osteoarthritis. Posttraumatic osteoarthritis: pathogenesis and pharmacological treatment options. Arthritis Res Ther. 2010;12:211.PubMedCrossRefGoogle Scholar
  21. 21.
    Hashimoto M, Nakasa T, Hikata T, Asahara H. Molecular network of cartilage homeostasis and osteoarthritis. Med Res Rev. 2008;28:464–81.PubMedCrossRefGoogle Scholar
  22. 22.
    Goldring MB, Marcu KB. Cartilage homeostasis in health and rheumatic diseases. Arthritis Res Ther. 2009;11:224.PubMedCrossRefGoogle Scholar
  23. 23.
    Drissi H, Zuscik M, Rosier R, O’Keefe R. Transcriptional regulation of chondrocyte maturation: potential involvement of transcription factors in OA pathogenesis. Mol Aspects Med. 2005;26:169–79.PubMedCrossRefGoogle Scholar
  24. 24.
    Kronenberg HM. Developmental regulation of the growth plate. Nature. 2003;423:332–6.PubMedCrossRefGoogle Scholar
  25. 25.
    Mackie EJ, Tatarczuch L, Mirams M. The skeleton: a multi-functional complex organ: the growth plate chondrocyte and endochondral ossification. J Endocrinol. 2011;211:109–21.PubMedCrossRefGoogle Scholar
  26. 26.
    Goldring MB, Goldring SR. Articular cartilage and subchondral bone in the pathogenesis of osteoarthritis. Ann N Y Acad Sci. 2010;1192:230–7.PubMedCrossRefGoogle Scholar
  27. 27.
    Li X, Wu JF. Recent developments in patent anti-cancer agents targeting the matrix metalloproteinases (MMPs). Recent Pat Anticancer Drug Discov. 2010;5:109–41.PubMedCrossRefGoogle Scholar
  28. 28.
    Tortorella MD, Tomasselli AG, Mathis KJ, Schnute ME, Woodard SS, Munie G, et al. Structural and inhibition analysis reveals the mechanism of selectivity of a series of aggrecanase inhibitors. J Biol Chem. 2009;284:24185–91.PubMedCrossRefGoogle Scholar
  29. 29.
    Billinghurst RC, Dahlberg L, Ionescu M, Reiner A, Bourne R, Rorabeck C, et al. Enhanced cleavage of type II collagen by collagenases in osteoarthritic articular cartilage. J Clin Invest. 1997;99:1534–45.PubMedCrossRefGoogle Scholar
  30. 30.
    Fosang AJ, Last K, Knauper V, Murphy G, Neame PJ. Degradation of cartilage aggrecan by collagenase-3 (MMP-13). FEBS Lett. 1996;380:17–20.PubMedCrossRefGoogle Scholar
  31. 31.
    Knauper V, Lopez-Otin C, Smith B, Knight G, Murphy G. Biochemical characterization of human collagenase-3. J Biol Chem. 1996;271:1544–50.PubMedCrossRefGoogle Scholar
  32. 32.
    Fosang AJ, Little CB. Drug insight: aggrecanases as therapeutic targets for osteoarthritis. Nat Clin Pract Rheumatol. 2008;4:420–7.PubMedCrossRefGoogle Scholar
  33. 33.
    Gilbert AM, Bursavich MG, Lombardi S, Georgiadis KE, Reifenberg E, Flannery CR, et al. N-[(8-hydroxy-5-substituted-quinolin-7-yl)(phenyl)methyl]-2-phenyloxy/amino-acetamide inhibitors of ADAMTS-5 (Aggrecanase-2). Bioorg Med Chem Lett. 2008;18:6454–7.PubMedCrossRefGoogle Scholar
  34. 34.
    Wittwer AJ, Hills RL, Keith RH, Munie GE, Arner EC, Anglin CP, et al. Substrate-dependent inhibition kinetics of an active site-directed inhibitor of ADAMTS-4 (Aggrecanase 1). Biochemistry. 2007;46:6393–401.PubMedCrossRefGoogle Scholar
  35. 35.
    Jones JI, Gockerman A, Busby WH Jr, Camacho-Hubner C, Clemmons DR. Extracellular matrix contains insulin-like growth factor binding protein-5: potentiation of the effects of IGF-I. J Cell Biol. 1993;121:679–87.PubMedCrossRefGoogle Scholar
  36. 36.
    Clemmons DR, Busby WH Jr, Garmong A, Schultz DR, Howell DS, Altman RD, et al. Inhibition of insulin-like growth factor binding protein 5 proteolysis in articular cartilage and joint fluid results in enhanced concentrations of insulin-like growth factor 1 and is associated with improved osteoarthritis. Arthritis Rheum. 2002;46:694–703.PubMedCrossRefGoogle Scholar
  37. 37.
    Tardif G, Hum D, Pelletier JP, Duval N, Martel-Pelletier J. Regulation of the IGFBP-5 and MMP-13 genes by the microRNAs miR-140 and miR-27a in human osteoarthritic chondrocytes. BMC Musculoskelet Disord. 2009;10:148.PubMedCrossRefGoogle Scholar
  38. 38.
    Miyaki S, Nakasa T, Otsuki S, Grogan SP, Higashiyama R, Inoue A, et al. MicroRNA-140 is expressed in differentiated human articular chondrocytes and modulates interleukin-1 responses. Arthritis Rheum. 2009;60:2723–30.PubMedCrossRefGoogle Scholar
  39. 39.
    Fernandes JC, Martel-Pelletier J, Pelletier JP. The role of cytokines in osteoarthritis pathophysiology. Biorheology. 2002;39:237–46.PubMedGoogle Scholar
  40. 40.
    Miyaki S, Sato T, Inoue A, Otsuki S, Ito Y, Yokoyama S, et al. MicroRNA-140 plays dual roles in both cartilage development and homeostasis. Genes Dev. 2010;24:1173–85.PubMedCrossRefGoogle Scholar
  41. 41.
    Liang ZJ, Zhuang H, Wang GX, Li Z, Zhang HT, Yu TQ, et al. MiRNA-140 is a negative feedback regulator of MMP-13 in IL-1beta-stimulated human articular chondrocyte C28/I2 cells. Inflamm Res. 2012;61:503–9.PubMedCrossRefGoogle Scholar
  42. 42.
    Akiyama H, Chaboissier MC, Martin JF, Schedl A, de Crombrugghe B. The transcription factor Sox9 has essential roles in successive steps of the chondrocyte differentiation pathway and is required for expression of Sox5 and Sox6. Genes Dev. 2002;16:2813–28.PubMedCrossRefGoogle Scholar
  43. 43.
    Mackie EJ, Ahmed YA, Tatarczuch L, Chen KS, Mirams M. Endochondral ossification: how cartilage is converted into bone in the developing skeleton. Int J Biochem Cell Biol. 2008;40:46–62.PubMedCrossRefGoogle Scholar
  44. 44.
    Serra R, Karaplis A, Sohn P. Parathyroid hormone-related peptide (PTHrP)-dependent and -independent effects of transforming growth factor beta (TGF-beta) on endochondral bone formation. J Cell Biol. 1999;145:783–94.PubMedCrossRefGoogle Scholar
  45. 45.
    Ballock RT, Heydemann A, Wakefield LM, Flanders KC, Roberts AB, Sporn MB. TGF-beta 1 prevents hypertrophy of epiphyseal chondrocytes: regulation of gene expression for cartilage matrix proteins and metalloproteases. Dev Biol. 1993;158:414–29.PubMedCrossRefGoogle Scholar
  46. 46.
    Grimsrud CD, Romano PR, D’Souza M, Puzas JE, Schwarz EM, Reynolds PR, et al. BMP signaling stimulates chondrocyte maturation and the expression of Indian hedgehog. J Orthop Res. 2001;19:18–25.PubMedCrossRefGoogle Scholar
  47. 47.
    van der Kraan PM, Goumans MJ, Blaney Davidson E, ten Dijke P. Age-dependent alteration of TGF-beta signalling in osteoarthritis. Cell Tissue Res. 2012;347:257–65.PubMedCrossRefGoogle Scholar
  48. 48.
    Minina E, Kreschel C, Naski MC, Ornitz DM, Vortkamp A. Interaction of FGF, Ihh/Pthlh, and BMP signaling integrates chondrocyte proliferation and hypertrophic differentiation. Dev Cell. 2002;3:439–49.PubMedCrossRefGoogle Scholar
  49. 49.
    Yoon BS, Ovchinnikov DA, Yoshii I, Mishina Y, Behringer RR, Lyons KM. Bmpr1a and Bmpr1b have overlapping functions and are essential for chondrogenesis in vivo. Proc Natl Acad Sci U S A. 2005;102:5062–7.PubMedCrossRefGoogle Scholar
  50. 50.
    Yang J, Qin S, Yi C, Ma G, Zhu H, Zhou W, et al. MiR-140 is co-expressed with Wwp2-C transcript and activated by Sox9 to target Sp1 in maintaining the chondrocyte proliferation. FEBS Lett. 2011;585:2992–7.PubMedCrossRefGoogle Scholar
  51. 51.
    Nakamura Y, Inloes JB, Katagiri T, Kobayashi T. Chondrocyte-specific microRNA-140 regulates endochondral bone development and targets Dnpep to modulate bone morphogenetic protein signaling. Mol Cell Biol. 2011;31:3019–28.PubMedCrossRefGoogle Scholar
  52. 52.
    Nicolas FE, Pais H, Schwach F, Lindow M, Kauppinen S, Moulton V, et al. mRNA expression profiling reveals conserved and non-conserved miR-140 targets. RNA Biol. 2011;8:607–15.PubMedCrossRefGoogle Scholar
  53. 53.
    Swingler TE, Wheeler G, Carmont V, Elliott HR, Barter MJ, Abu-Elmagd M, et al. The expression and function of microRNAs in chondrogenesis and osteoarthritis. Arthritis Rheum. 2012;64:1909–19.PubMedCrossRefGoogle Scholar
  54. 54.
    Iliopoulos D, Malizos KN, Oikonomou P, Tsezou A. Integrative microRNA and proteomic approaches identify novel osteoarthritis genes and their collaborative metabolic and inflammatory networks. PLoS One. 2008;3:e3740.PubMedCrossRefGoogle Scholar
  55. 55.
    Nicolas FE, Pais H, Schwach F, Lindow M, Kauppinen S, Moulton V, et al. Experimental identification of microRNA-140 targets by silencing and overexpressing miR-140. RNA. 2008;14:2513–20.PubMedCrossRefGoogle Scholar
  56. 56.
    Pais H, Nicolas FE, Soond SM, Swingler TE, Clark IM, Chantry A, et al. Analyzing mRNA expression identifies Smad3 as a microRNA-140 target regulated only at protein level. RNA. 2010;16:489–94.PubMedCrossRefGoogle Scholar
  57. 57.
    Tuddenham L, Wheeler G, Ntounia-Fousara S, Waters J, Hajihosseini MK, Clark I, et al. The cartilage specific microRNA-140 targets histone deacetylase 4 in mouse cells. FEBS Lett. 2006;580:4214–7.PubMedCrossRefGoogle Scholar
  58. 58.
    Eberhart JK, He X, Swartz ME, Yan YL, Song H, Boling TC, et al. MicroRNA Mirn140 modulates Pdgf signaling during palatogenesis. Nat Genet. 2008;40:290–8.PubMedCrossRefGoogle Scholar
  59. 59.
    Nakamura Y, He X, Kobayashi T, Yan YL, Postlethwait JH, Warman ML. Unique roles of microRNA140 and its host gene WWP2 in cartilage biology. J Musculoskelet Neuronal Interact. 2008;8:321–2.PubMedGoogle Scholar
  60. 60.
    Araldi E, Schipani E. MicroRNA-140 and the silencing of osteoarthritis. Genes Dev. 2010;24:1075–80.PubMedCrossRefGoogle Scholar
  61. 61.
    Yang B, Guo H, Zhang Y, Chen L, Ying D, Dong S. MicroRNA-145 regulates chondrogenic differentiation of mesenchymal stem cells by targeting Sox9. PLoS One. 2011;6:e21679.PubMedCrossRefGoogle Scholar
  62. 62.
    Martinez-Sanchez A, Dudek KA, Murphy CL. Regulation of human chondrocyte function through direct inhibition of cartilage master regulator SOX9 by microRNA-145 (miRNA-145). J Biol Chem. 2012;287:916–24.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Basel 2013

Authors and Affiliations

  1. 1.Department of Genetics and Molecular BiologyXi’an Jiaotong University College of MedicineXi’anPeople’s Republic of China
  2. 2.Hong Hui HospitalXi’an Jiaotong University College of MedicineXi’anPeople’s Republic of China

Personalised recommendations