Advertisement

Inflammation Research

, Volume 62, Issue 7, pp 641–651 | Cite as

TNF-α signalling and inflammation: interactions between old acquaintances

  • Hana Zelová
  • Jan Hošek
Review

Abstract

Introduction

Inflammation is a very important part of innate immunity and is regulated in many steps. One such regulating step is the cytokine network, where tumor necrosis factor α (TNF-α) plays one of the most important roles.

Methods

A PubMed and Web of Science databases search was performed for studies providing evidences on the role of TNF-α in inflammation, apoptosis, and cancer.

Results and Conclusion

This review concisely summarizes the role of this pro-inflammatory cytokine during inflammation. It is focused mainly on TNF-α intracellular signaling and its influence on the typical inflammatory features in the organism. Being one of the most important pro-inflammatory cytokines, TNF-α participates in vasodilatation and edema formation, and leukocyte adhesion to epithelium through expression of adhesion molecules; it regulates blood coagulation, contributes to oxidative stress in sites of inflammation, and indirectly induces fever. The connection between TNF-α and cancer is mentioned as well.

Keywords

TNF-α TNFR Inflammation Apoptosis Cancer 

References

  1. 1.
    Baud V, Karin M. Signal transduction by tumor necrosis factor and its relatives. Trends Cell Biol. 2001;9:372–7.CrossRefGoogle Scholar
  2. 2.
    Wajant H, Pfizenmaier K, Scheurich P. Tumor necrosis factor signaling. Cell Death Differ. 2003;1:45–65.CrossRefGoogle Scholar
  3. 3.
    Zhou T, Mountz JD, Kimberly RP. Immunobiology of tumor necrosis factor receptor superfamily. Immunol Res. 2002;1–3:323–36.CrossRefGoogle Scholar
  4. 4.
    Beutler B, Bazzoni F. TNF, apoptosis and autoimmunity: A common thread? Blood Cells Mol Dis. 1998;10:216–30.CrossRefGoogle Scholar
  5. 5.
    Naismith JH, Devine TQ, Brandhuber BJ, Sprang SR. Crystallographic evidence for dimerization of unliganded tumor necrosis factor receptor. J Biol Chem. 1995;22:13303–7.Google Scholar
  6. 6.
    Duda E, Nagy T, Männel D, Eissner G. Signaling and reverse signaling in the tumor necrosis factor/TNF receptor system. In: Damjanovich S, editor. Biophysical aspects of transmembrane signaling. 8th ed. Berlin: Springer; 2005. p. 171–209.CrossRefGoogle Scholar
  7. 7.
    Spriggs DR, Deutsch S, Kufe DW. Genomic structure, induction, and production of TNF-alpha. Immunol Ser. 1992;56:3–34.PubMedGoogle Scholar
  8. 8.
    Ruuls SR, Sedgwick JD. Unlinking tumor necrosis factor biology from the major histocompatibility complex: lessons from human genetics and animal models. Am J Hum Genet. 1999;2:294–301.CrossRefGoogle Scholar
  9. 9.
    Idriss HT, Naismith JH. TNF alpha and the TNF receptor superfamily: structure-function relationship(s). Microsc Res Tech. 2000;3:184–95.CrossRefGoogle Scholar
  10. 10.
    Deleault KM, Skinner SJ, Brooks SA. Tristetraprolin regulates TNF TNF-alpha mRNA stability via a proteasome dependent mechanism involving the combined action of the ERK and p38 pathways. Mol Immunol. 2008;1:13–24.CrossRefGoogle Scholar
  11. 11.
    Kriegler M, Perez C, DeFay K, Albert I, Lu SD. A novel form of TNF/cachectin is a cell surface cytotoxic transmembrane protein: ramifications for the complex physiology of TNF. Cell. 1988;1:45–53.CrossRefGoogle Scholar
  12. 12.
    Luettig B, Decker T, Lohmann-Matthes ML. Evidence for the existence of two forms of membrane tumor necrosis factor: an integral protein and a molecule attached to its receptor. J Immunol. 1989;12:4034–8.Google Scholar
  13. 13.
    Black RA, Rauch CT, Kozlosky CJ, Peschon JJ, Slack JL, Wolfson MF, Castner BJ, et al. A metalloproteinase disintegrin that releases tumour-necrosis factor-alpha from cells. Nature. 1997;6618:729–33.CrossRefGoogle Scholar
  14. 14.
    Eissner G, Kolch W, Scheurich P. Ligands working as receptors: reverse signaling by members of the TNF superfamily enhance the plasticity of the immune system. Cytokine Growth Factor Rev. 2004;5:353–66.CrossRefGoogle Scholar
  15. 15.
    Eck MJ, Sprang SR. The structure of tumor necrosis factor-alpha at 2.6 A resolution. Implications for receptor binding. J Biol Chem. 1989;29:17595–605.Google Scholar
  16. 16.
    Bradley JR. TNF-mediated inflammatory disease. J Pathol. 2008;2:149–60.CrossRefGoogle Scholar
  17. 17.
    Tracey KJ, Vlassara H, Cerami A. Cachectin/tumour necrosis factor. Lancet. 1989;8647:1122–6.CrossRefGoogle Scholar
  18. 18.
    Lin E, Calvano SE, Lowry SF. Inflammatory cytokines and cell response in surgery. Surgery. 2000;2:117–26.CrossRefGoogle Scholar
  19. 19.
    Cairns CB, Panacek EA, Harken AH, Banerjee A. Bench to bedside: tumor necrosis factor-alpha: from inflammation to resuscitation. Acad Emerg Med. 2000;8:930–41.CrossRefGoogle Scholar
  20. 20.
    Camussi G, Albano E, Tetta C, Bussolino F. The molecular action of tumor necrosis factor-alpha. Eur J Biochem. 1991;1:3–14.CrossRefGoogle Scholar
  21. 21.
    Sullivan KE. Regulation Of Inflammation. Immunol Res. 2003;2–3:529–38.CrossRefGoogle Scholar
  22. 22.
    Lee JY, Kim NA, Sanford A, Sullivan KE. Histone acetylation and chromatin conformation are regulated separately at the TNF-alpha promoter in monocytes and macrophages. J Leukoc Biol. 2003;6:862–71.CrossRefGoogle Scholar
  23. 23.
    Beutler B, Krochin N, Milsark IW, Luedke C, Cerami A. Control of cachectin (tumor necrosis factor) synthesis: mechanisms of endotoxin resistance. Science. 1986;4753:977–80.CrossRefGoogle Scholar
  24. 24.
    Ksontini R, MacKay SL, Moldawer LL. Revisiting the role of tumor necrosis factor alpha and the response to surgical injury and inflammation. Arch Surg. 1998;5:558–67.CrossRefGoogle Scholar
  25. 25.
    Loetscher H, Pan YC, Lahm HW, Gentz R, Brockhaus M, Tabuchi H, Lesslauer W. Molecular cloning and expression of the human 55 kd tumor necrosis factor receptor. Cell. 1990;2:351–9.CrossRefGoogle Scholar
  26. 26.
    Schall TJ, Lewis M, Koller KJ, Lee A, Rice GC, Wong GH, Gatanaga T, et al. Molecular cloning and expression of a receptor for human tumor necrosis factor. Cell. 1990;2:361–70.CrossRefGoogle Scholar
  27. 27.
    Fuchs P, Strehl S, Dworzak M, Himmler A, Ambros PF. Structure of the human TNF receptor 1 (p60) gene (TNFR1) and localization to chromosome 12p13 [corrected]. Genomics. 1992;1:219–24.CrossRefGoogle Scholar
  28. 28.
    Santee SM, Owen-Schaub LB. Human tumor necrosis factor receptor p75/80 (CD120b) gene structure and promoter characterization. J Biol Chem. 1996;35:21151–9.Google Scholar
  29. 29.
    Ledgerwood EC, Pober JS, Bradley JR. Recent advances in the molecular basis of TNF signal transduction. Lab Invest. 1999;9:1041–50.Google Scholar
  30. 30.
    Ihnatko R, Kubes M. TNF signaling: early events and phosphorylation. Gen Physiol Biophys. 2007;3:159–67.Google Scholar
  31. 31.
    Aderka D, Engelmann H, Maor Y, Brakebusch C, Wallach D. Stabilization of the bioactivity of tumor necrosis factor by its soluble receptors. J Exp Med. 1992;2:323–9.CrossRefGoogle Scholar
  32. 32.
    Hajeer AH, Hutchinson IV. TNF-alpha gene polymorphism: clinical and biological implications. Microsc Res Tech. 2000;3:216–28.CrossRefGoogle Scholar
  33. 33.
    Wang J, Al-Lamki RS, Zhang H, Kirkiles-Smith N, Gaeta ML, Thiru S, Pober JS, et al. Histamine antagonizes tumor necrosis factor (TNF) signaling by stimulating TNF receptor shedding from the cell surface and Golgi storage pool. J Biol Chem. 2003;24:21751–60.CrossRefGoogle Scholar
  34. 34.
    Tracey D, Klareskog L, Sasso EH, Salfeld JG, Tak PP. Tumor necrosis factor antagonist mechanisms of action: a comprehensive review. Pharmacol Ther. 2008;2:244–79.CrossRefGoogle Scholar
  35. 35.
    Grell M, Douni E, Wajant H, Lohden M, Clauss M, Maxeiner B, Georgopoulos S, et al. The transmembrane form of tumor necrosis factor is the prime activating ligand of the 80 kDa tumor necrosis factor receptor. Cell. 1995;5:793–802.CrossRefGoogle Scholar
  36. 36.
    Grell M, Wajant H, Zimmermann G, Scheurich P. The type 1 receptor (CD120a) is the high-affinity receptor for soluble tumor necrosis factor. Proc Natl Acad Sci USA. 1998;2:570–5.CrossRefGoogle Scholar
  37. 37.
    Chan FK, Chun HJ, Zheng L, Siegel RM, Bui KL, Lenardo MJ. A domain in TNF receptors that mediates ligand-independent receptor assembly and signaling. Science. 2000;5475:2351–4.CrossRefGoogle Scholar
  38. 38.
    Hsu H, Shu HB, Pan MG, Goeddel DV. TRADD-TRAF2 and TRADD-FADD interactions define two distinct TNF receptor 1 signal transduction pathways. Cell. 1996;2:299–308.CrossRefGoogle Scholar
  39. 39.
    Hsu H, Huang J, Shu HB, Baichwal V, Goeddel DV. TNF-dependent recruitment of the protein kinase RIP to the TNF receptor-1 signaling complex. Immunity. 1996;4:387–96.PubMedCrossRefGoogle Scholar
  40. 40.
    Eder J. Tumour necrosis factor alpha and interleukin 1 signalling: do MAPKK kinases connect it all? Trends Pharmacol Sci. 1997;9:319–22.Google Scholar
  41. 41.
    Siebenlist U, Franzoso G, Brown K. Structure, regulation and function of NF-kappa B. Annu Rev Cell Biol. 1994;405–455.Google Scholar
  42. 42.
    Li Q, Verma IM. NF-kappaB regulation in the immune system. Nat Rev Immunol. 2002;10:725–34.CrossRefGoogle Scholar
  43. 43.
    Dejardin E. The alternative NF-kappaB pathway from biochemistry to biology: pitfalls and promises for future drug development. Biochem Pharmacol. 2006;9:1161–79.CrossRefGoogle Scholar
  44. 44.
    Siebenlist U, Brown K, Claudio E. Control of lymphocyte development by nuclear factor-kappaB. Nat Rev Immunol. 2005;6:435–45.CrossRefGoogle Scholar
  45. 45.
    Devin A, Cook A, Lin Y, Rodriguez Y, Kelliher M, Liu Z. The distinct roles of TRAF2 and RIP in IKK activation by TNF-R1: TRAF2 recruits IKK to TNF-R1 while RIP mediates IKK activation. Immunity. 2000;4:419–29.CrossRefGoogle Scholar
  46. 46.
    Zandi E, Rothwarf DM, Delhase M, Hayakawa M, Karin M. The IkappaB kinase complex (IKK) contains two kinase subunits, IKKalpha and IKKbeta, necessary for IkappaB phosphorylation and NF-kappaB activation. Cell. 1997;2:243–52.CrossRefGoogle Scholar
  47. 47.
    Li XH, Fang X, Gaynor RB. Role of IKKgamma/nemo in assembly of the Ikappa B kinase complex. J Biol Chem. 2001;6:4494–500.CrossRefGoogle Scholar
  48. 48.
    Bonizzi G, Karin M. The two NF-kappaB activation pathways and their role in innate and adaptive immunity. Trends Immunol. 2004;6:280–8.CrossRefGoogle Scholar
  49. 49.
    Yamamoto Y, Verma UN, Prajapati S, Kwak YT, Gaynor RB. Histone H3 phosphorylation by IKK-alpha is critical for cytokine-induced gene expression. Nature. 2003;6940:655–9.CrossRefGoogle Scholar
  50. 50.
    Widmann C, Gibson S, Jarpe MB, Johnson GL. Mitogen-activated protein kinase: conservation of a three-kinase module from yeast to human. Physiol Rev. 1999;1:143–80.Google Scholar
  51. 51.
    Kumar S, Blake SM, Emery JG. Intracellular signaling pathways as a target for the treatment of rheumatoid arthritis. Curr Opin Pharmacol. 2001;3:307–13.CrossRefGoogle Scholar
  52. 52.
    Kyriakis JM, Avruch J. Mammalian mitogen-activated protein kinase signal transduction pathways activated by stress and inflammation. Physiol Rev. 2001;2:807–69.Google Scholar
  53. 53.
    Kaminska B. MAPK signalling pathways as molecular targets for anti-inflammatory therapy–from molecular mechanisms to therapeutic benefits. Biochim Biophys Acta. 2005;1–2:253–62.Google Scholar
  54. 54.
    Schindler JF, Monahan JB, Smith WG. p38 pathway kinases as anti-inflammatory drug targets. J Dent Res. 2007;9:800–11.Google Scholar
  55. 55.
    Chinnaiyan AM, Tepper CG, Seldin MF, O’Rourke K, Kischkel FC, Hellbardt S, Krammer PH, et al. FADD/MORT1 is a common mediator of CD95 (Fas/APO-1) and tumor necrosis factor receptor-induced apoptosis. J Biol Chem. 1996;9:4961–5.Google Scholar
  56. 56.
    Tibbetts MD, Zheng L, Lenardo MJ. The death effector domain protein family: regulators of cellular homeostasis. Nat Immunol. 2003;5:404–9.CrossRefGoogle Scholar
  57. 57.
    Kischkel FC, Hellbardt S, Behrmann I, Germer M, Pawlita M, Krammer PH, Peter ME. Cytotoxicity-dependent APO-1 (Fas/CD95)-associated proteins form a death-inducing signaling complex (DISC) with the receptor. EMBO J. 1995;22:5579–88.Google Scholar
  58. 58.
    Muzio M, Stockwell BR, Stennicke HR, Salvesen GS, Dixit VM. An induced proximity model for caspase-8 activation. J Biol Chem. 1998;5:2926–30.CrossRefGoogle Scholar
  59. 59.
    Stratford May Jr W, Deng X. Apoptosis. In: Runge MS, Patterson C, editors. Principles of Molecular Medicine, 2nd edition. Totowa: Humana Press; 2006. pp. 709–719.Google Scholar
  60. 60.
    Naude PJ, den Boer JA, Luiten PG, Eisel UL. Tumor necrosis factor receptor cross-talk. FEBS J. 2011;6:888–98.CrossRefGoogle Scholar
  61. 61.
    Sun SCLSC. New insights into NF-kappaB regulation and function. Trends Immunol. 2008;10:469–78.CrossRefGoogle Scholar
  62. 62.
    Rauert H, Wicovsky A, Muller N, Siegmund D, Spindler V, Waschke J, Kneitz C, et al. Membrane tumor necrosis factor (TNF) induces p100 processing via TNF receptor-2 (TNFR2). J Biol Chem. 2010;10:7394–404.CrossRefGoogle Scholar
  63. 63.
    Haider S, Knofler M. Human tumour necrosis factor: physiological and pathological roles in placenta and endometrium. Placenta. 2009;2:111–23.CrossRefGoogle Scholar
  64. 64.
    Faustman D, Davis M. TNF receptor 2 pathway: drug target for autoimmune diseases. Nat Rev Drug Discov. 2010;6:482–93.CrossRefGoogle Scholar
  65. 65.
    Zhang R, Xu Y, Ekman N, Wu Z, Wu J, Alitalo K, Min W. Etk/Bmx transactivates vascular endothelial growth factor 2 and recruits phosphatidylinositol 3-kinase to mediate the tumor necrosis factor-induced angiogenic pathway. J Biol Chem. 2003;51:51267–76.CrossRefGoogle Scholar
  66. 66.
    Zhou Z, Gengaro P, Wang W, Wang XQ, Li C, Faubel S, Rivard C, et al. Role of NF-kappaB and PI 3-kinase/Akt in TNF-alpha-induced cytotoxicity in microvascular endothelial cells. Am J Physiol Renal Physiol. 2008;4:F932–41.CrossRefGoogle Scholar
  67. 67.
    Cone JB. Inflammation. Am J Surg. 2001;6:558–62.CrossRefGoogle Scholar
  68. 68.
    Sherwood ER, Toliver-Kinsky T. Mechanisms of the inflammatory response. Best Pract Res Clin Anaesthesiol. 2004;3:385–405.CrossRefGoogle Scholar
  69. 69.
    Rees DD, Monkhouse JE, Cambridge D, Moncada S. Nitric oxide and the haemodynamic profile of endotoxin shock in the conscious mouse. Br J Pharmacol. 1998;3:540–6.CrossRefGoogle Scholar
  70. 70.
    Vallance P, Chan N. Endothelial function and nitric oxide: clinical relevance. Heart. 2001;3:342–50.CrossRefGoogle Scholar
  71. 71.
    Tabernero A, Schneider F, Potenza MA, Randriamboavonjy V, Chasserot S, Wolf P, Mitolo-Chieppa D, et al. Cyclooxygenase-2 and inducible nitric oxide synthase in omental arteries harvested from patients with severe liver diseases: immuno-localization and influence on vascular tone. Intensive Care Med. 2003;2:262–70.Google Scholar
  72. 72.
    Sanders DB, Larson DF, Hunter K, Gorman M, Yang B. Comparison of tumor necrosis factor-alpha effect on the expression of iNOS in macrophage and cardiac myocytes. Perfusion. 2001;1:67–74.CrossRefGoogle Scholar
  73. 73.
    Knowles RG, Moncada S. Nitric oxide synthases in mammals. Biochem J. 1994;249-58.Google Scholar
  74. 74.
    Neumann P, Gertzberg N, Johnson A. TNF-alpha induces a decrease in eNOS promoter activity. Am J Physiol Lung Cell Mol Physiol. 2004;2:L452–9.CrossRefGoogle Scholar
  75. 75.
    Mark KS, Trickler WJ, Miller DW. Tumor necrosis factor-alpha induces cyclooxygenase-2 expression and prostaglandin release in brain microvessel endothelial cells. J Pharmacol Exp Ther. 2001;3:1051–8.Google Scholar
  76. 76.
    Denzlinger C, Rapp S, Hagmann W, Keppler D. Leukotrienes as mediators in tissue trauma. Science. 1985;4723:330–2.CrossRefGoogle Scholar
  77. 77.
    Friedl HP, Till GO, Trentz O, Ward PA. Roles of histamine, complement and xanthine oxidase in thermal injury of skin. Am J Pathol. 1989;1:203–17.Google Scholar
  78. 78.
    Chappell D, Hofmann-Kiefer K, Jacob M, Rehm M, Briegel J, Welsch U, Conzen P, et al. TNF-alpha induced shedding of the endothelial glycocalyx is prevented by hydrocortisone and antithrombin. Basic Res Cardiol. 2009;1:78–89.CrossRefGoogle Scholar
  79. 79.
    Goldblum SE, Sun WL. Tumor necrosis factor-alpha augments pulmonary arterial transendothelial albumin flux in vitro. Am J Physiol. 1990;2(Pt 1):L57–67.Google Scholar
  80. 80.
    Angelini DJ, Hyun SW, Grigoryev DN, Garg P, Gong P, Singh IS, Passaniti A, et al. TNF-alpha increases tyrosine phosphorylation of vascular endothelial cadherin and opens the paracellular pathway through fyn activation in human lung endothelia. Am J Physiol Lung Cell Mol Physiol. 2006;6:L1232–45.CrossRefGoogle Scholar
  81. 81.
    Campos MM, Souza GE, Calixto JB. Modulation of kinin B1 but not B2 receptors-mediated rat paw edema by IL-1beta and TNFalpha. Peptides. 1998;7:1269–76.CrossRefGoogle Scholar
  82. 82.
    Chandrasekharan UM, Siemionow M, Unsal M, Yang L, Poptic E, Bohn J, Ozer K, et al. Tumor necrosis factor alpha (TNF-alpha) receptor-II is required for TNF-alpha-induced leukocyte-endothelial interaction in vivo. Blood. 2007;5:1938–44.CrossRefGoogle Scholar
  83. 83.
    Mommsen P, Barkhausen T, Hildebrand F, Zeckey C, Krettek C. van GM. Regulation of L-selectin expression by trauma-relevant cytokines. Pathol Res Pract. 2011;3:142–7.CrossRefGoogle Scholar
  84. 84.
    Smith CW, Marlin SD, Rothlein R, Toman C, Anderson DC. Cooperative interactions of LFA-1 and Mac-1 with intercellular adhesion molecule-1 in facilitating adherence and transendothelial migration of human neutrophils in vitro. J Clin Invest. 1989;6:2008–17.CrossRefGoogle Scholar
  85. 85.
    Briscoe DM, Schoen FJ, Rice GE, Bevilacqua MP, Ganz P, Pober JS. Induced expression of endothelial-leukocyte adhesion molecules in human cardiac allografts. Transplantation. 1991;2:537–9.Google Scholar
  86. 86.
    Riewald M, Ruf W. Science review: role of coagulation protease cascades in sepsis. Crit Care. 2003;2:123–9.CrossRefGoogle Scholar
  87. 87.
    Pawlinski R, Pedersen B, Kehrle B, Aird WC, Frank RD, Guha M, Mackman N. Regulation of tissue factor and inflammatory mediators by Egr-1 in a mouse endotoxemia model. Blood. 2003;10:3940–7.CrossRefGoogle Scholar
  88. 88.
    Ulfhammer E, Larsson P, Karlsson L, Hrafnkelsdóttir T, Bokarewa M, Tarkowski A, Jern S. TNF-alpha mediated suppression of tissue type plasminogen activator expression in vascular endothelial cells is NF-kappaB- and p38 MAPK-dependent. J Thromb Haemost. 2006;8:1781–9.CrossRefGoogle Scholar
  89. 89.
    Morgan MJ, Liu ZG. Crosstalk of reactive oxygen species and NF-kappaB signaling. Cell Res. 2011;1:103–15.CrossRefGoogle Scholar
  90. 90.
    Lambeth JD. NOX enzymes and the biology of reactive oxygen. Nat Rev Immunol. 2004;3:181–9.CrossRefGoogle Scholar
  91. 91.
    Yoshida LS, Tsunawaki S. Expression of NADPH oxidases and enhanced H(2)O(2)-generating activity in human coronary artery endothelial cells upon induction with tumor necrosis factor-alpha. Int Immunopharmacol. 2008;10:1377–85.CrossRefGoogle Scholar
  92. 92.
    Rahman A, Kefer J, Bando M, Niles WD, Malik AB. E-selectin expression in human endothelial cells by TNF-alpha-induced oxidant generation and NF-kappaB activation. Am J Physiol. 1998;3(Pt 1):L533–44.Google Scholar
  93. 93.
    Li JM, Fan LM, Christie MR, Shah AM. Acute tumor necrosis factor alpha signaling via NADPH oxidase in microvascular endothelial cells: role of p47phox phosphorylation and binding to TRAF4. Mol Cell Biol. 2005;6:2320–30.CrossRefGoogle Scholar
  94. 94.
    Bubici C, Papa S, Dean K, Franzoso G. Mutual cross-talk between reactive oxygen species and nuclear factor-kappa B: molecular basis and biological significance. Oncogene. 2006;51:6731–48.CrossRefGoogle Scholar
  95. 95.
    Steinman L. Modulation of postoperative cognitive decline via blockade of inflammatory cytokines outside the brain. Proc Natl Acad Sci USA. 2010;48:20595–6.CrossRefGoogle Scholar
  96. 96.
    Sethi G, Shanmugam MK, Ramachandran L, Kumar AP, Tergaonkar V. Multifaced link between cancer and inflammation. Biosci Rep. 2012;1:1–15.CrossRefGoogle Scholar
  97. 97.
    Balkwill FR, Mantovani A. Cancer-related inflammation: common themes and therapeutic opportunities. Semin Cancer Biol. 2012;1:33–40.CrossRefGoogle Scholar
  98. 98.
    Szlosarek P, Charles KA, Balkwill FR. Tumour necrosis factor-α as a tumour promoter. Eur J Cancer. 2006;6:745–50.CrossRefGoogle Scholar
  99. 99.
    Balkwill F. Tumor necrosis factor or tumor promoting factor? Cytokine Growth Factor Ref. 2002;2:135–41.CrossRefGoogle Scholar
  100. 100.
    Aggarwal BB, Shishodia S, Sandur SK, Pandey MK, Sethi G. Inflammation andcancer: how hot is the link? Biochem Pharmacol. 2006;11:1605–21.CrossRefGoogle Scholar
  101. 101.
    Gaiotti D, Chung J, Iglesias M, Nees M, Baker PD, Evans CH, Woodworth CD. Tumornecrosis fact-alpha promotes human papillomavirus (HPV) E6/E7 RNA expression and cyclin- dependent kinase activity in HPV-immortalized keratinocytes by a ras-dependent pathway. Mol Carcinog. 2000;2:97–109.CrossRefGoogle Scholar
  102. 102.
    Wu S, Boyer CM, Whitaker RS, Berchuck A, Wiener JR, Weinberg JB, Bast RC Jr. Tumornecrosis factor alpha as an autocrine and paracrine growth factor for ovarian cancer: monokine inductionof tumor cell proliferation and tumor necrosis factor alpha expression. Cancer Res. 1993;8:1939–44.Google Scholar
  103. 103.
    Jaiswal M, LaRusso NF, Burgart LJ, Gores GJ. Inflammatory cytokines induce DNA damage and inhibit DNA repair in cholangiocarcinoma cells by a nitric oxide-dependentmechanism. Cancer Res. 2000;1:184–90.Google Scholar
  104. 104.
    Yoshida S, Ono M, Shono T, Izumi H, Ishibashi T, Suzuki H, Kuwano M. Involvement of interleukin-8, vascular endothelial growth factor, and basic fibroblast growth factor in tumor necrosis factor alpha-dependent angiogenesis. Mol Cell Biol. 1997;7:4015–23.Google Scholar
  105. 105.
    Cheng N, Chen J. Tumor necrosis factor-alpha induction of endothelial ephrin A1 expression is mediated by a p38 MAPK- andSAPK/JNK-dependent but nuclear factor-kappa B-independent mechanism. J Biol Chem. 2001;17:13771–7.Google Scholar
  106. 106.
    De Cesaris P, Starace D, Starace G, Filippini A, Stefanini M, Ziparo E. Activation of Jun N-terminal kinase/stress-activated protein kinase pathway by tumor necrosis factor alpha leads to intercellular adhesion molecule-1 expression. J Biol Chem. 1999;41:28978–82.CrossRefGoogle Scholar
  107. 107.
    Bussolino F, Camussi G, Baglioni C. Synthesis and release of platelet-activating factor by human vascular endothelial cells treated with tumor necrosis factor or interleukin 1 alpha. J Biol Chem. 1988;24:11856–61.Google Scholar
  108. 108.
    Wu Y, Zhou BP. TNF-alpha/NF-kappaB/Snail pathway in cancer cell migration and invasion. Br J Cancer. 2010;4:639–44.CrossRefGoogle Scholar
  109. 109.
    Hagemann T, Wilson J, Kulbe H, Li NF, Leinster DA, Charles K, Klemm F, Pukrop T, Binder C, Balkwill FR. Macrophages induce invasiveness of epithelial cancer cells via NF-kappa B and JNK. J Immunol. 2005;2:1197–205.Google Scholar
  110. 110.
    Kulbe H, Hagemann T, Szlosarek PW, Balkwill FR, Wilson JL. The inflammatory cytokine tumor necrosis factor-alpha regulates chemokine receptor expression on ovarian cancer cells. Cancer Res. 2005;22:10355–62.CrossRefGoogle Scholar
  111. 111.
    Warzocha K, Salles G, Bienvenu J, Bastion Y, Dumontet C, Renard N, Neidhardt-Berard EM, Coiffier B. Tumor necrosis factor ligand-receptor system can predict treatment outcome in lymphoma patients. J Clin Oncol. 1997;2:499–508.Google Scholar

Copyright information

© Springer Basel 2013

Authors and Affiliations

  1. 1.Department of Natural Drugs, Faculty of PharmacyUniversity of Veterinary and Pharmaceutical Sciences BrnoBrnoCzech Republic

Personalised recommendations