Advertisement

Inflammation Research

, Volume 62, Issue 8, pp 765–772 | Cite as

CS1 (SLAMF7) inhibits production of proinflammatory cytokines by activated monocytes

  • Jong R. Kim
  • Nathan C. Horton
  • Stephen O. Mathew
  • Porunelloor A. Mathew
Original Research Paper

Abstract

Objective and design

CS1 (CRACC, CD319, SLAMF7) is a member of the Signaling Lymphocyte Activation Molecule family expressed on immune cells mediating host defense. CS1 is a self-ligand and has both activating and inhibitory functions in Natural Killer cells. However, the function of CS1 in human monocytes is currently unknown. The objective of this study was to evaluate the control of CS1 surface expression in activated monocytes and to assess the effect of CS1 triggering on proinflammatory cytokine production by monocytes.

Material, methods and treatment

Human monocytes were isolated from PBMC of healthy volunteers by magnetic depletion method or FACS sorting. The monocytes were cultured with or without LPS (1 μg/ml) in the presence or absence of various pharmacological inhibitors to inhibit NF-кB and PI3K signaling pathways. The cells were stimulated with anti-CS1 antibody or isotype control. Total RNA was extracted and RT-PCR was performed using specific primers for CS1 and EAT-2. Cell supernatants were collected and cytokine levels (TNF-α and IL-12p70) were determined by sandwich ELISA.

Results

Our study revealed that adherent or LPS-activated monocytes express CS1, and CS1 induction is via NF-кB and PI3K pathways. Importantly, cross-linking CS1 resulted in reduced production of proinflammatory cytokines TNF-α and IL-12p70 by LPS-activated monocytes.

Conclusions

Our study demonstrated that CS1 plays an inhibitory role in human monocytes to control proinflammatory immune responses.

Keywords

CS1 Monocytes Cytokines SLAM family 

Notes

Acknowledgments

Flow cytometry was performed in the Flow Cytometry and Laser Capture Microdissection Core Facility at The University of North Texas Health Science Center. This study was supported by UNT Health Science Center Seed grant G67704.

References

  1. 1.
    Kumar S, Jack R. Origin of monocytes and their differentiation to macrophages and dendritic cells. J Endotoxin Res. 2006;12:278–84.PubMedGoogle Scholar
  2. 2.
    Gonzalez-Mejia ME, Doseff AI. Regulation of monocytes and macrophages cell fate. Front Biosci. 2009;14:2413–31.PubMedCrossRefGoogle Scholar
  3. 3.
    Serbina NV, Jia T, Hohl TM, Pamer EG. Monocyte-mediated defense against microbial pathogens. Annu Rev Immunol. 2008;26:421–52.PubMedCrossRefGoogle Scholar
  4. 4.
    Muzio M, Bosisio D, Polentarutti N, D’Amico G, Stoppacciaro A, Mancinelli R, et al. Differential expression and regulation of toll-like receptors (TLR) in human leukocytes: selective expression of TLR3 in dendritic cells. J Immunol. 2000;164:5998–6004.PubMedGoogle Scholar
  5. 5.
    Kadowaki N, Ho S, Antonenko S, Malefyt RW, Kastelein RA, Bazan F, et al. Subsets of human dendritic cell precursors express different toll-like receptors and respond to different microbial antigens. J Exp Med. 2001;194:863–9.PubMedCrossRefGoogle Scholar
  6. 6.
    Visintin A, Mazzoni A, Spitzer JH, Wyllie DH, Dower SK, Segal DM. Regulation of Toll-like receptors in human monocytes and dendritic cells. J Immunol. 2001;166:249–55.PubMedGoogle Scholar
  7. 7.
    Hornung V, Rothenfusser S, Britsch S, Krug A, Jahrsdorfer B, Giese T, et al. Quantitative expression of toll-like receptor 1–10 mRNA in cellular subsets of human peripheral blood mononuclear cells and sensitivity to CpG oligodeoxynucleotides. J Immunol. 2002;168:4531–7.PubMedGoogle Scholar
  8. 8.
    Martin M, Rehani K, Jope RS, Michalek SM. Toll-like receptor-mediated cytokine production is differentially regulated by glycogen synthase kinase 3. Nat Immunol. 2005;6:777–84.PubMedCrossRefGoogle Scholar
  9. 9.
    Johansson U, Lawson C, Dabare M, Syndercombe-Court D, Newland AC, Howells GL, et al. Human peripheral blood monocytes express protease receptor-2 and respond to receptor activation by production of IL-6, IL-8, and IL-1{beta}. J Leukoc Biol. 2005;78:967–75.PubMedCrossRefGoogle Scholar
  10. 10.
    Donnelly RP, Freeman SL, Hayes MP. Inhibition of IL-10 expression by IFN-gamma up-regulates transcription of TNF-alpha in human monocytes. J Immunol. 1995;155:1420–7.PubMedGoogle Scholar
  11. 11.
    Goulart IM, Mineo JR, Foss NT. Production of transforming growth factor-beta 1 (TGF-beta1) by blood monocytes from patients with different clinical forms of leprosy. Clin Exp Immunol. 2000;122:330–4.PubMedCrossRefGoogle Scholar
  12. 12.
    Wijngaarden S, van de Winkel JG, Jacobs KM, Bijlsma JW, Lafeber FP, van Roon JA. A shift in the balance of inhibitory and activating Fcgamma receptors on monocytes toward the inhibitory Fcgamma receptor IIb is associated with prevention of monocyte activation in rheumatoid arthritis. Arthritis Rheum. 2004;50:3878–87.PubMedCrossRefGoogle Scholar
  13. 13.
    Tridandapani S, Siefker K, Teillaud JL, Carter JE, Wewers MD, Anderson CL. Regulated expression and inhibitory function of Fcgamma RIIb in human monocytic cells. J Biol Chem. 2002;277:5082–9.PubMedCrossRefGoogle Scholar
  14. 14.
    Pricop L, Redecha P, Teillaud JL, Frey J, Fridman WH, Sautes-Fridman C, et al. Differential modulation of stimulatory and inhibitory Fc gamma receptors on human monocytes by Th1 and Th2 cytokines. J Immunol. 2001;166:531–7.PubMedGoogle Scholar
  15. 15.
    Liu Y, Masuda E, Blank MC, Kirou KA, Gao X, Park MS, et al. Cytokine-mediated regulation of activating and inhibitory Fc gamma receptors in human monocytes. J Leukoc Biol. 2005;77:767–76.PubMedCrossRefGoogle Scholar
  16. 16.
    Cannons JL, Tangye SG, Schwartzberg PL. SLAM family receptors and SAP adaptors in immunity. Annu Rev Immunol. 2011;29:665–705.PubMedCrossRefGoogle Scholar
  17. 17.
    Veillette A. Immune regulation by SLAM family receptors and SAP-related adaptors. Nat Rev Immunol. 2006;6:56–66.PubMedCrossRefGoogle Scholar
  18. 18.
    Veillette A, Cruz-Munoz ME, Zhong MC. SLAM family receptors and SAP-related adaptors: matters arising. Trends Immunol. 2006;27:228–34.PubMedCrossRefGoogle Scholar
  19. 19.
    Nichols KE, Harkin DP, Levitz S, Krainer M, Kolquist KA, Genovese C, et al. Inactivating mutations in an SH2 domain-encoding gene in X-linked lymphoproliferative syndrome. Proc Natl Acad Sci USA. 1998;95:13765–70.PubMedCrossRefGoogle Scholar
  20. 20.
    Sayos J, Wu C, Morra M, Wang N, Zhang X, Allen D, et al. The X-linked lymphoproliferative-disease gene product SAP regulates signals induced through the co-receptor SLAM. Nature. 1998;395:462–9.PubMedCrossRefGoogle Scholar
  21. 21.
    Coffey AJ, Brooksbank RA, Brandau O, Oohashi T, Howell GR, Bye JM, et al. Host response to EBV infection in X-linked lymphoproliferative disease results from mutations in an SH2-domain encoding gene [see comments]. Nat Genet. 1998;20:129–35.PubMedCrossRefGoogle Scholar
  22. 22.
    Chlewicki LK, Velikovsky CA, Balakrishnan V, Mariuzza RA, Kumar V. Molecular basis of the dual functions of 2B4 (CD244). J Immunol. 2008;180:8159–67.PubMedGoogle Scholar
  23. 23.
    Cruz-Munoz ME, Dong Z, Shi X, Zhang S, Veillette A. Influence of CRACC, a SLAM family receptor coupled to the adaptor EAT-2, on natural killer cell function. Nat Immunol. 2009;10:297–305.PubMedCrossRefGoogle Scholar
  24. 24.
    Boles KS, Mathew PA. Molecular cloning of CS1, a novel human natural killer cell receptor belonging to the CD2 subset of the immunoglobulin superfamily. Immunogenetics. 2001;52:302–7.PubMedCrossRefGoogle Scholar
  25. 25.
    Bouchon A, Cella M, Grierson HL, Cohen JI, Colonna M. Activation of NK cell-mediated cytotoxicity by a SAP-independent receptor of the CD2 family. J Immunol. 2001;167:5517–21.PubMedGoogle Scholar
  26. 26.
    Boles KS, Stepp SE, Bennett M, Kumar V, Mathew PA. 2B4 (CD244) and CS1: novel members of the CD2 subset of the immunoglobulin superfamily molecules expressed on natural killer cells and other leukocytes. Immunol Rev. 2001;181:234–49.PubMedCrossRefGoogle Scholar
  27. 27.
    De Salort J, Sintes J, Llinas L, Matesanz-Isabel J, Engel P. Expression of SLAM (CD150) cell-surface receptors on human B-cell subsets: from pro-B to plasma cells. Immunol Lett. 2011;134:129–36.PubMedCrossRefGoogle Scholar
  28. 28.
    Kumaresan PR, Lai WC, Chuang SS, Bennett M, Mathew PA. CS1, a novel member of the CD2 family, is homophilic and regulates NK cell function. Mol Immunol. 2002;39:1–8.PubMedCrossRefGoogle Scholar
  29. 29.
    Lee JK, Boles KS, Mathew PA. Molecular and functional characterization of a CS1 (CRACC) splice variant expressed in human NK cells that does not contain immunoreceptor tyrosine-based switch motifs. Eur J Immunol. 2004;34:2791–9.PubMedCrossRefGoogle Scholar
  30. 30.
    Tassi I, Colonna M. The cytotoxicity receptor CRACC (CS-1) recruits EAT-2 and activates the PI3K and phospholipase Cgamma signaling pathways in human NK cells. J Immunol. 2005;175:7996–8002.PubMedGoogle Scholar
  31. 31.
    Lee JK, Mathew SO, Vaidya SV, Kumaresan PR, Mathew PA. CS1 (CRACC, CD319) induces proliferation and autocrine cytokine expression on human B lymphocytes. J Immunol. 2007;179:4672–8.PubMedGoogle Scholar
  32. 32.
    Hsi ED, Steinle R, Balasa B, Szmania S, Draksharapu A, Shum BP, et al. CS1, a potential new therapeutic antibody target for the treatment of multiple myeloma. Clin Cancer Res. 2008;14:2775–84.PubMedCrossRefGoogle Scholar
  33. 33.
    Tai YT, Dillon M, Song W, Leiba M, Li XF, Burger P, et al. Anti-CS1 humanized monoclonal antibody HuLuc63 inhibits myeloma cell adhesion and induces antibody-dependent cellular cytotoxicity in the bone marrow milieu. Blood. 2008;112:1329–37.PubMedCrossRefGoogle Scholar
  34. 34.
    van Rhee F, Szmania SM, Dillon M, van Abbema AM, Li X, Stone MK, et al. Combinatorial efficacy of anti-CS1 monoclonal antibody elotuzumab (HuLuc63) and bortezomib against multiple myeloma. Mol Cancer Ther. 2009;8:2616–24.PubMedCrossRefGoogle Scholar
  35. 35.
    Kim JR, Mathew SO, Patel RK, Pertusi RM, Mathew PA. Altered expression of signalling lymphocyte activation molecule (SLAM) family receptors CS1 (CD319) and 2B4 (CD244) in patients with systemic lupus erythematosus. Clin Exp Immunol. 2010;160:348–58.PubMedCrossRefGoogle Scholar
  36. 36.
    Edelson PJ, Cohn ZA. Purification and cultivation of monocytes and macrophages. In: Bloom BA, David JR, editors. In vitro methods in cell-mediated and tumor immunity. San Diego: Academic; 1976. p. 333–40.Google Scholar
  37. 37.
    Kelley JL, Rozek MM, Suenram CA, Schwartz CJ. Activation of human blood monocytes by adherence to tissue culture plastic surfaces. Exp Mol Pathol. 1987;46:266–78.PubMedCrossRefGoogle Scholar
  38. 38.
    Shi C, Hohl TM, Leiner I, Equinda MJ, Fan X, Pamer EG. Ly6G+ neutrophils are dispensable for defense against systemic Listeria monocytogenes infection. J Immunol. 2011;187:5293–8.PubMedCrossRefGoogle Scholar
  39. 39.
    Daley JM, Thomay AA, Connolly MD, Reichner JS, Albina JE. Use of Ly6G-specific monoclonal antibody to deplete neutrophils in mice. J Leukoc Biol. 2008;83:64–70.PubMedCrossRefGoogle Scholar
  40. 40.
    Dunay IR, Fuchs A, Sibley LD. Inflammatory monocytes but not neutrophils are necessary to control infection with Toxoplasma gondii in mice. Infect Immun. 2010;78:1564–70.PubMedCrossRefGoogle Scholar
  41. 41.
    Wojtasiak M, Pickett DL, Tate MD, Londrigan SL, Bedoui S, Brooks AG, et al. Depletion of Gr-1+, but not Ly6G+, immune cells exacerbates virus replication and disease in an intranasal model of herpes simplex virus type 1 infection. J Gen Virol. 2010;91:2158–66.PubMedCrossRefGoogle Scholar
  42. 42.
    Cannons JL, Qi H, Lu KT, Dutta M, Gomez-Rodriguez J, Cheng J, et al. Optimal germinal center responses require a multistage T cell: B cell adhesion process involving integrins, SLAM-associated protein, and CD84. Immunity. 2010;32:253–65.PubMedCrossRefGoogle Scholar
  43. 43.
    Schwartzberg PL, Mueller KL, Qi H, Cannons JL. SLAM receptors and SAP influence lymphocyte interactions, development and function. Nat Rev Immunol. 2009;9:39–46.PubMedCrossRefGoogle Scholar
  44. 44.
    Calpe S, Wang N, Romero X, Berger SB, Lanyi A, Engel P, et al. The SLAM and SAP gene families control innate and adaptive immune responses. Adv Immunol. 2008;97:177–250.PubMedCrossRefGoogle Scholar
  45. 45.
    Nanda N, Andre P, Bao M, Clauser K, Deguzman F, Howie D, et al. Platelet aggregation induces platelet aggregate stability via SLAM family receptor signaling. Blood. 2005;106:3028–34.PubMedCrossRefGoogle Scholar
  46. 46.
    de la Fuente MA, Pizcueta P, Nadal M, Bosch J, Engel P. CD84 leukocyte antigen is a new member of the Ig superfamily. Blood. 1997;90:2398–405.PubMedGoogle Scholar
  47. 47.
    Nakajima H, Cella M, Langen H, Friedlein A, Colonna M. Activating interactions in human NK cell recognition: the role of 2B4-CD48. Eur J Immunol. 1999;29:1676–83.PubMedCrossRefGoogle Scholar
  48. 48.
    Romero X, Benitez D, March S, Vilella R, Miralpeix M, Engel P. Differential expression of SAP and EAT-2-binding leukocyte cell-surface molecules CD84, CD150 (SLAM), CD229 (Ly9) and CD244 (2B4). Tissue Antigens. 2004;64:132–44.PubMedCrossRefGoogle Scholar
  49. 49.
    Farina C, Theil D, Semlinger B, Hohlfeld R, Meinl E. Distinct responses of monocytes to Toll-like receptor ligands and inflammatory cytokines. Int Immunol. 2004;16:799–809.PubMedCrossRefGoogle Scholar
  50. 50.
    Stark S, Watzl C. 2B4 (CD244), NTB-A and CRACC (CS1) stimulate cytotoxicity but no proliferation in human NK cells. Int Immunol. 2006;18:241–7.PubMedCrossRefGoogle Scholar
  51. 51.
    Tangye SG, Lazetic S, Woollatt E, Sutherland GR, Lanier LL, Phillips JH. Cutting edge: human 2B4, an activating NK cell receptor, recruits the protein tyrosine phosphatase SHP-2 and the adaptor signaling protein SAP. J Immunol. 1999;162:6981–5.PubMedGoogle Scholar
  52. 52.
    Morra M, Lu J, Poy F, Martin M, Sayos J, Calpe S, et al. Structural basis for the interaction of the free SH2 domain EAT-2 with SLAM receptors in hematopoietic cells. EMBO J. 2001;20:5840–52.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Basel 2013

Authors and Affiliations

  • Jong R. Kim
    • 1
  • Nathan C. Horton
    • 1
  • Stephen O. Mathew
    • 1
  • Porunelloor A. Mathew
    • 1
  1. 1.Department of Molecular Biology and Immunology and Institute for Cancer ResearchUniversity of North Texas Health Science Center at Fort WorthFort WorthUSA

Personalised recommendations