Advertisement

Inflammation Research

, Volume 62, Issue 3, pp 251–258 | Cite as

Flupirtine, a re-discovered drug, revisited

  • Istvan SzelenyiEmail author
Review

Abstract

Flupirtine was developed long before KV7 (KCNQ) channels were known. However, it was clear from the beginning that flupirtine is neither an opioid nor a nonsteroidal anti-inflammatory analgesic. Its unique muscle relaxing activity was discovered by serendipity. In the meantime, broad and intensive research has resulted in a partial clarification of its mode of action. Flupirtine is the first therapeutically used KV7 channel activator with additional GABAAergic mechanisms and thus the first representative of a novel class of analgesics. The presently accepted main mode of its action, potassium KV7 (KCNQ) channel activation, opens a series of further therapeutic possibilities. One of them has now been realized: its back-up compound, the bioisostere retigabine, has been approved for the treatment of epilepsy.

Keywords

Analgesia Skeletal muscle relaxation Potassium channels GABA Retigabine 

Notes

Acknowledgments

I am grateful to Dr Berthold Renner for valuable and constructive comments and helpful discussions.

References

  1. 1.
    Jakovlev V, Sofia RD, Achterrath-Tuckermann U, von Schlichtegroll A, Thiemer K. Untersuchungen zur pharmakologischen Wirkung von Flupirtin, einem strukturell neuartigen Analgetikum. Arzneimittelforschung [The pharmacologic effect of flupirtine, a structurally new analgesic]. Arzneimittelforschung. 1985;35:30–43 (in German).Google Scholar
  2. 2.
    Gordon R, Sofia RD, Diamantis W. Effect of flupirtine maleate on the nociceptive pathway, EEG, evoked potentials and polysynaptic reflexes in laboratory animals. Postgrad Med J. 1987;63(Suppl 3):49–55.PubMedGoogle Scholar
  3. 3.
    Carlsson KH, Jurna I. Depression by flupirtine, a novel analgesic agent, of motor and sensory responses of the nociceptive system in the rat spinal cord. Eur J Pharmacol. 1987;143:89–99.PubMedCrossRefGoogle Scholar
  4. 4.
    Bleyer H, Carlsson KH, Erkel HJ, Jurna I. Flupirtine depresses nociceptive activity evoked in rat thalamus. Eur J Pharmacol. 1988;151:259–65.PubMedCrossRefGoogle Scholar
  5. 5.
    Nickel B, Herz A, Jakovlev V, Tibes U. Untersuchungen zum Wirkmechanismus des Analgetikums Flupirtin [Mechanism of action of the analgesic flupirtine]. Arzneimittelforschung. 1985;35:1402–9 (in German).Google Scholar
  6. 6.
    Nickel B, Borbe HO, Szelenyi I. Investigations with the novel non-opioid analgesic flupirtine in regard to possible benzodiazepine-like abuse inducing potential. Arzneimittelforschung. 1990;40:905–8.PubMedGoogle Scholar
  7. 7.
    Darius H, Schrör K. The action of flupirtine on prostaglandin formation and platelet aggregation in vitro. Arzneimittelforschung. 1985;35:55–9.PubMedGoogle Scholar
  8. 8.
    Yeung SY, Greenwood IA. Electrophysiological and functional effects of the KCNQ channel blocker XE991 on murine portal vein smooth muscle cells. Br J Pharmacol. 2005;146:585–95.PubMedCrossRefGoogle Scholar
  9. 9.
    Mani BK, Brueggemann LI, Cribbs LL, Byron KL. Activation of vascular KCNQ (Kv7) potassium channels reverses spasmogen-induced constrictor responses in rat basilar artery. Br J Pharmacol. 2011;164:237–49.PubMedCrossRefGoogle Scholar
  10. 10.
    Joshi S, Sedivy V, Hodyc D, Herget J, Gurney AM. KCNQ modulators reveal a key role for KCNQ potassium channels in regulating the tone of rat pulmonary artery smooth muscle. J Pharmacol Exp Ther. 2009;329:368–76.PubMedCrossRefGoogle Scholar
  11. 11.
    Mackie AR, Brueggemann LI, Henderson KK, Shiels AJ, Cribbs LL, Scrogin KE, Byron KL. Vascular KCNQ potassium channels as novel targets for the control of mesenteric artery constriction by vasopressin, based on studies in single cells, pressurized arteries, and in vivo measurements of mesenteric vascular resistance. J Pharmacol Exp Ther. 2008;325:475–83.PubMedCrossRefGoogle Scholar
  12. 12.
    Szelenyi I, Nickel B. Putative site(s) and mechanism(s) of action of flupirtine, a novel analgesic compound. Postgrad Med J. 1987;63(Suppl 3):57–60.PubMedGoogle Scholar
  13. 13.
    Szelenyi I, Nickel B, Borbe HO, Brune K. Mode of antinociceptive action of flupirtine in the rat. Br J Pharmacol. 1989;97:835–42.PubMedCrossRefGoogle Scholar
  14. 14.
    Nickel B, Shandra A, Godlevsky L, Mazarati A, Kupferberg H, Szelenyi I. Antiepileptic effects of a new drug: D-20443. 20th Int Epilepsy Congress, Oslo, 13–16 August 1993. Epilepsia. 1993;34(Suppl. 2):95.Google Scholar
  15. 15.
    Aghajanian GK, VanderMaelen CP. Alpha 2-adrenoceptor-mediated hyperpolarization of locus coeruleus neurons: intracellular studies in vivo. Science. 1982;215:1394–6.Google Scholar
  16. 16.
    Jakob R, Krieglstein J. Flupirtine activates an inwardly rectifying potassium current in hippocampal neurons. Naunyn-Schmied Arch Pharmacol. 1995;351:R162.Google Scholar
  17. 17.
    Jakob R, Krieglstein J. Influence of flupirtine on a G-protein coupled inwardly rectifying potassium current in hippocampal neurones. Br J Pharmacol. 1997;122:1333–8.PubMedCrossRefGoogle Scholar
  18. 18.
    North RA. Twelfth Gaddum memorial lecture. Drug receptors and the inhibition of nerve cells. Br J Pharmacol. 1989;98:13–28.PubMedCrossRefGoogle Scholar
  19. 19.
    Ocaña M, Del Pozo E, Baeyens JM. ATP-dependent K+ channel blockers antagonize morphine- but not U-504,88H-induced antinociception. Eur J Pharmacol. 1993;230:203–7.Google Scholar
  20. 20.
    Ocaña M, Baeyens JM. Differential effects of K+ channel blockers on antinociception induced by alpha 2-adrenoceptor, GABAB and kappa-opioid receptor agonists. Br J Pharmacol. 1993;110:1049–54.PubMedCrossRefGoogle Scholar
  21. 21.
    Andrade R, Aghajanian GK. Opiate- and alpha 2-adrenoceptor-induced hyperpolarizations of locus ceruleus neurons in brain slices: reversal by cyclic adenosine 3’:5′-monophosphate analogues. J Neurosci. 1985;5:2359–64.PubMedGoogle Scholar
  22. 22.
    Kornhuber J, Bleich S, Wiltfang J, Maler M, Parsons CG. Flupirtine shows functional NMDA receptor antagonism by enhancing Mg2+ block via activation of voltage independent potassium channels. Rapid communication. J Neural Transm. 1999;106:857–67.PubMedCrossRefGoogle Scholar
  23. 23.
    Crozier RA, Ajit SK, Kaftan EJ, Pausch MH. MrgD activation inhibits KCNQ/M-currents and contributes to enhanced neuronal excitability. J Neurosci. 2007;27:4492–6.PubMedCrossRefGoogle Scholar
  24. 24.
    Klinger F, Geier P, Dorostkar MM, Chandaka GK, Yousuf A, Salzer I, Kubista H, Boehm S. Concomitant facilitation of GABA(A) receptors and K(V) 7 channels by the non-opioid analgesic flupirtine. Br J Pharmacol. 2012;166:1631–42.PubMedCrossRefGoogle Scholar
  25. 25.
    Ilyin VI, Carlin KP, Hodges DD, Robledo S, Woodward RM. Flupirtine—a positive modulator of heteromeric KCNQ2/Q3 channels. Neurosci. Meet. Program No. 758.10, July 10, 2002 (Abstract).Google Scholar
  26. 26.
    Martire M, Castaldo P, D’Amico M, Preziosi P, Annunziato L, Taglialatela M. M channels containing KCNQ2 subunits modulate norepinephrine, aspartate, and GABA release from hippocampal nerve terminals. J Neurosci. 2004;24:592–7.PubMedCrossRefGoogle Scholar
  27. 27.
    Wladyka CL, Kunze DL. KCNQ/M-currents contribute to the resting membrane potential in rat visceral sensory neurons. J Physiol. 2006;575:175–89.PubMedCrossRefGoogle Scholar
  28. 28.
    Redfern WS, Carlsson L, Davis AS, Lynch WG, MacKenzie I, Palethorpe S, Siegl PK, Strang I, Sullivan AT, Wallis R, Camm AJ, Hammond TG. Relationships between preclinical cardiac electrophysiology, clinical QT interval prolongation and torsade de pointes for a broad range of drugs: evidence for a provisional safety margin in drug development. Cardiovasc Res. 2003;58:32–45.PubMedCrossRefGoogle Scholar
  29. 29.
    Löscher W, Fredow G, Ganter M. Comparison of pharmacodynamic effects of the non-competitive NMDA receptor antagonists MK-801 and ketamine in pigs. Eur J Pharmacol. 1991;192:377–82.PubMedCrossRefGoogle Scholar
  30. 30.
    Tricklebank MD, Singh L, Oles RJ, Preston C, Iversen SD. The behavioural effects of MK-801: a comparison with antagonists acting non-competitively and competitively at the NMDA receptor. Eur J Pharmacol. 1989;167:127–35.PubMedCrossRefGoogle Scholar
  31. 31.
    Harish S, Bhuvana K, Bengalorkar GM, Kumar T. Flupirtine: clinical pharmacology. J Anaesthesiol Clin Pharmacol. 2012;28:172–7.PubMedCrossRefGoogle Scholar
  32. 32.
    Osborne NN, Schwarz M, Pergande G. Protection of rabbit retina from ischemic injury by flupirtine. Invest Ophthalmol Vis Sci. 1996;1996(37):274–80.Google Scholar
  33. 33.
    Osborne NN, Cazevieille C, Wood JP, Nash MS, Pergande G, Block F, Kosinski C, Schwarz M. Flupirtine, a nonopioid centrally acting analgesic, acts as an NMDA antagonist. Gen Pharmacol. 1998;30:255–63.PubMedCrossRefGoogle Scholar
  34. 34.
    Perovic S, Schleger C, Pergande G, Iskric S, Ushijima H, Rytik P, Müller WE. The triaminopyridine flupirtine prevents cell death in rat cortical cells induced by N-methyl-D-aspartate and gp120 of HIV-1. Eur J Pharmacol. 1994;288:27–33.PubMedCrossRefGoogle Scholar
  35. 35.
    Osborne NN, Pergande G, Block F, Schwarz M. Immunohistochemical evidence for flupirtine acting as an antagonist on the N-methyl-d-aspartate and homocysteic acid-induced release of GABA in the rabbit retina. Brain Res. 1994;667:291–4.PubMedCrossRefGoogle Scholar
  36. 36.
    Lorenz B, Schlüter T, Bohnensack R, Pergande G, Müller WE. Effect of flupirtine on cell death of human umbilical vein endothelial cells induced by reactive oxygen species. Biochem Pharmacol. 1998;56:1615–24.PubMedCrossRefGoogle Scholar
  37. 37.
    Müller WE, Laplanche JL, Ushijima H, Schröder HC. Novel approaches in diagnosis and therapy of Creutzfeldt-Jakob disease. Mech Ageing Dev. 2000;116:193–218.PubMedCrossRefGoogle Scholar
  38. 38.
    Schröder HC, Müller WE. Neuroprotective effect of flupirtine in prion disease. Drugs Today (Barc). 2002;38:49–58.CrossRefGoogle Scholar
  39. 39.
    Malan TP, Mata HP, Porreca F. Spinal GABA(A) and GABA(B) receptor pharmacology in a rat model of neuropathic pain. Anesthesiology. 2002;96:1161–7.PubMedCrossRefGoogle Scholar
  40. 40.
    Knabl J, Witschi R, Hösl K, Reinold H, Zeilhofer UB, Ahmadi S, Brockhaus J, Sergejeva M, Hess A, Brune K, Fritschy JM, Rudolph U, Möhler H, Zeilhofer HU. Reversal of pathological pain through specific spinal GABAA receptor subtypes. Nature. 2008;451:330–4.PubMedCrossRefGoogle Scholar
  41. 41.
    Tucker AP, Mezzatesta J, Nadeson R, Goodchild CS. Intrathecal midazolam II: combination with intrathecal fentanyl for labor pain. Anesth Analg. 2004;98:1521–7.PubMedCrossRefGoogle Scholar
  42. 42.
    Witschi R, Punnakkal P, Paul J, Walczak JS, Cervero F, Fritschy JM, Kuner R, Keist R, Rudolph U, Zeilhofer HU. Presynaptic alpha2-GABAA receptors in primary afferent depolarization and spinal pain control. J Neurosci. 2011;31:8134–42.PubMedCrossRefGoogle Scholar
  43. 43.
    Wienrich M, Szelenyi I. The muscle relaxant effect of flupirtine—indications from electrophysiological studies (abstract). Soc Neurosci. 1991;Part 2:537.5(1341).Google Scholar
  44. 44.
    Wienrich M, Szelenyi I. Der Mechanismus der muskelrelaxierenden Wirkung von Flupirtin—erste Hinweise aus elektrophysiologischen Untersuchungen (abstract). Der Schmerz. 1991;5:161(H 2.5).Google Scholar
  45. 45.
    Weiser T, Nickel B, Szelenyi I, Wienrich M. In-vivo and in vitro findings about the muscle relaxing properties of flupirtine. Arch Pharmacol. 1992; 346(Suppl 1):R22 (P27).Google Scholar
  46. 46.
    Popovici F, Dorostkar M, Boehm S. The non-opioid analgesic flupirtine is a modulator of GABAA receptors involved in pain sensation (abstract). BMC Pharmacol. 2008;8(Suppl 1):A14.CrossRefGoogle Scholar
  47. 47.
    Hummel T, Friedmann T, Pauli E, Niebch G, Borbe HO, Kobal G. Dose-related analgesic effects of flupirtine. Br J Clin Pharmacol. 1991;32:69–76.PubMedCrossRefGoogle Scholar
  48. 48.
    Nickel B, Kolasiewicz W, Szelenyi I. Quantification of rigidity and tremor activity in rats by using a new device and its validation by different classes of drugs. Arzneimittelforschung. 1997;47:1081–6.PubMedGoogle Scholar
  49. 49.
    Szelenyi I, Nickel B. Pharmacological profile of flupirtine, a novel centrally acting, non-opioid analgesic drug. Agents Actions. 1991;32(Suppl):119–23.Google Scholar
  50. 50.
    Emig P, Nickel B, Weischer CH, Szelenyi I, Engel J. Neue zentralanalgetisch wirksame Triaminopyridine. Arzneimittelforschung. 1993;43:627–31.PubMedGoogle Scholar
  51. 51.
    Nickel B, Jakovlev V, Szelenyi I. Einfluss von Flupirtin, verschiedener Analgetika und Muskelrelaxantien auf den Skelettmuskeltonus wacher Ratten. Arzneimittelforschung. 1990;40:909–11.PubMedGoogle Scholar
  52. 52.
    Schwarz M, Block F, Pergande G. N-methyl-D-aspartate (NMDA)-mediated muscle relaxant action of flupirtine in rats. NeuroReport. 1994;5:1981–4.PubMedCrossRefGoogle Scholar
  53. 53.
    Schwarz M, Schmitt T, Pergande G, Block F. N-methyl-d-aspartate and alpha 2-adrenergic mechanisms are involved in the depressant action of flupirtine on spinal reflexes in rats. Eur J Pharmacol. 1995;276:247–55.PubMedCrossRefGoogle Scholar
  54. 54.
    Roura-Ferrer M, Solé L, Martínez-Mármol R, Villalonga N, Felipe A. Skeletal muscle Kv7 (KCNQ) channels in myoblast differentiation and proliferation. Biochem Biophys Res Commun. 2008;369:1094–7.PubMedCrossRefGoogle Scholar
  55. 55.
    Iannotti FA, Panza E, Barrese V, Viggiano D, Soldovieri MV, Taglialatela M. Expression, localization, and pharmacological role of Kv7 potassium channels in skeletal muscle proliferation, differentiation, and survival after myotoxic insults. J Pharmacol Exp Ther. 2010;332:811–20.PubMedCrossRefGoogle Scholar
  56. 56.
    Wieland SJ, Gong QH. Modulation of a potassium conductance in developing skeletal muscle. Am J Physiol. 1995;268:C490–5.PubMedGoogle Scholar
  57. 57.
    Rundfeldt C, Netzer R. Investigations into the mechanism of action of the new anticonvulsant retigabine. Interaction with GABAergic and glutamatergic neurotransmission and with voltage gated ion channels. Arzneimittelforschung. 2000;50:1063–70.PubMedGoogle Scholar
  58. 58.
    Su TR, Zei WS, Su CC, Hsiao G, Lin MJ. The effects of the KCNQ openers retigabine and flupirtine on myotonia in mammalian skeletal muscle induced by a chloride channel blocker. Evid Based Complement Alternat Med. 2012;2012:803082.PubMedGoogle Scholar
  59. 59.
    Richter A, Sander SE, Rundfeldt C. Antidystonic effects of Kv7 (KCNQ) channel openers in the dtsz mutant, an animal model of primary paroxysmal dystonia. Br J Pharmacol. 2006;149:747–53.PubMedCrossRefGoogle Scholar
  60. 60.
    Nickel B, Nagymajtenyi L, Desi I, Szelenyi I. Flupirtine a centrally acting analgesic with muscle relaxing activity (abstract). Scand J Rheumatol. 1992;21(s94):30.Google Scholar
  61. 61.
    Rose K, Ooi L, Dalle C, Robertson B, Wood IC, Gamper N. Transcriptional repression of the M channel subunit Kv7.2 in chronic nerve injury. Pain. 2011;152:742–54.PubMedCrossRefGoogle Scholar
  62. 62.
    Passmore GM, Selyanko AA, Mistry M, Al-Qatari M, Marsh SJ, Matthews EA, Dickenson AH, Brown TA, Burbidge SA, Main M, Brown DA. KCNQ/M currents in sensory neurons: significance for pain therapy. J Neurosci. 2003;23:7227–36.PubMedGoogle Scholar
  63. 63.
    Blackburn-Munro G, Jensen BS. The anticonvulsant retigabine attenuates nociceptive behaviours in rat models of persistent and neuropathic pain. Eur J Pharmacol. 2003;460:109–16.PubMedCrossRefGoogle Scholar
  64. 64.
    Mishra S, Choudhary P, Joshi S, Bhatnagar S. Successful use of flupirtine in refractory neuropathic pain due to small fiber neuropathy. Am J Hosp Palliat Care. 2013;30:91–93.Google Scholar
  65. 65.
    Sittl R, Carr RW, Schwarz JR, Grafe P. The Kv7 potassium channel activator flupirtine affects clinical excitability parameters of myelinated axons in isolated rat sural nerve. J Peripher Nerv Syst. 2010;15:63–72.PubMedCrossRefGoogle Scholar
  66. 66.
    Sittl R, Carr RW, Fleckenstein J, Grafe P. Enhancement of axonal potassium conductance reduces nerve hyperexcitability in an in vitro model of oxaliplatin-induced acute neuropathy. Neurotoxicology. 2010;31:694–700.PubMedCrossRefGoogle Scholar
  67. 67.
    Nielsen AN, Mathiesen C, Blackburn-Munro G. Pharmacological characterisation of acid-induced allodynia in rats. Eur J Pharmacol. 2004;487:93–103.PubMedCrossRefGoogle Scholar
  68. 68.
    Wörz R. Flupirtine in chronic myofacial pain conditions. Fortschr Med. 1991;109:158–60 (in German).Google Scholar
  69. 69.
    Stoll AL. Fibromyalgia symptoms relieved by flupirtine: an open-label case series. Psychosomatics. 2000;41:371–2.PubMedCrossRefGoogle Scholar
  70. 70.
    Block F, Pergande G, Schwarz M. Flupirtine reduces functional deficits and neuronal damage after global ischemia in rats. Brain Res. 1997;754:279–84.PubMedCrossRefGoogle Scholar
  71. 71.
    Perovic S, Bohm M, Meesters E, Meinhardt A, Pergande G, Muller WE. Pharmacological intervention in age-associated brain disorders by flupirtine: Alzheimer’s and prion diseases. Mech Ageing Dev. 1998;101:1–19.PubMedCrossRefGoogle Scholar
  72. 72.
    Sättler MB, Williams SK, Neusch C, Otto M, Pehlke JR, Bähr M, Diem R. Flupirtine as neuroprotective add-on therapy in autoimmune optic neuritis. Am J Pathol. 2008;173:1496–507.PubMedCrossRefGoogle Scholar
  73. 73.
    Michel M, Radziszewski P, Falconer C, Marschall-Kehrel D, Rundfeldt C, Vanhoutte F. The centrally acting ion channel modulator flupirtine improves bladder function in animal models and patients with overactive bladder syndrome. 2006. https://www.icsoffice.org/Abstracts/Publish/46/000406.pdf. Accessed 8 Aug 2012.
  74. 74.
    McCallum LA, Pierce SL, England SK, Greenwood IA, Tribe RM. The contribution of Kv7 channels to pregnant mouse and human myometrial contractility. J Cell Mol Med. 2011;15:577–86.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Basel 2013

Authors and Affiliations

  1. 1.Institute for Experimental and Clinical Pharmacology and Toxicology, Doerenkamp-Chair for Innovations in Animal and Consumer ProtectionFriedrich-Alexander UniversityErlangenGermany

Personalised recommendations