Inflammation Research

, Volume 62, Issue 3, pp 313–324 | Cite as

Polysaccharides of Dendrobium officinale inhibit TNF-α-induced apoptosis in A-253 cell line

  • L. Xiang
  • C. W. Stephen Sze
  • T. B. Ng
  • Y. Tong
  • P. C. Shaw
  • C. W. Sydney Tang
  • Y. B. Kalin ZhangEmail author
Original Research Paper



Our previous study demonstrated that polysaccharides of Dendrobium officinale Kimura et Migo (DP) were capable of enhancing immunomodulation in an experimental model of Sjögren’s syndrome, a chronic autoimmune disease mainly affecting the salivary glands. In the present study, we further investigated the protective effect of DP on a human salivary gland cell line A-253 against tumor necrosis factor (TNF)-α-induced apoptosis.


TNF-α (100 U/ml) was used as the stimulus for treating the A-253 cells to induce cellular apoptosis. Nuclear factor-kappa B (NF-κB, p65), phosphorylation of mitogen-activated protein kinases (MAPK), reactive oxygen species (ROS) generation, mitochondrial membrane potential and proapoptotic proteins were examined. A-253 cells were pre-treated with DP for 12 h before TNF-α stimulation.


We observed translocation of NF-κB into the nuclei, prolonged MAPK, excessive ROS generation and strongly decreased mitochondrial membrane potential, and subsequently cytochrome C release and caspase-3 activation. However, pre-treatment with DP significantly inhibited the TNF-α-induced apoptotic factors.


Our data suggested the inhibitory effect of DP on TNF-α-induced apoptosis in a human salivary gland cell line. This inhibition indicated potential inference of DP in the initial plasma membrane-bound complex of TNF-α and its receptors.


TNF-α A-253 Polysaccharides Dendrobium officinale Apoptosis 



This work was supported by grants (Project No. 20730472 and Project No. 201011159206) from the University of Hong Kong.


  1. 1.
    Huang CF, Lin SS, Liao PH, Young SC, Yang CC. The immunopharmaceutical effects and mechanisms of herb medicine. Cell Mol Immunol. 2008;5:23–31.PubMedCrossRefGoogle Scholar
  2. 2.
    Tzianabos AO. Polysaccharide immunomodulators as therapeutic agents: structural aspects and biologic function. Clin Microbiol Rev. 2000;13:523–33.PubMedCrossRefGoogle Scholar
  3. 3.
    Paulsen BS. Plant polysaccharides with immunostimulatory activities. Curr Org Chem. 2001;5:939.CrossRefGoogle Scholar
  4. 4.
    Yukawa T, Ohba H, Cameron K, Chase M (1996) Chloroplast DNA phylogeny of subtribe Dendrobiinae (Orchidaceae): Insights from a combined analysis based on rbcL sequences and restriction site variation. J Plant Res 109:169–176.Google Scholar
  5. 5.
    Zhao Y, Son YO, Kim SS, Jang YS, Lee JC. Antioxidant and anti-hyperglycemic activity of polysaccharide isolated from Dendrobium chrysotoxum Lindl. J Biochem Mol Biol. 2007;40:670–7.PubMedCrossRefGoogle Scholar
  6. 6.
    Zhang YB, Wang J, Wang ZT, But PP, Shaw PC. DNA microarray for identification of the herb of dendrobium species from Chinese medicinal formulations. Planta Med. 2003;69:1172–4.PubMedCrossRefGoogle Scholar
  7. 7.
    Ding X, Wang Z, Zhou K, Xu L, Xu H, Wang Y. Allele-specific primers for diagnostic PCR authentication of Dendrobium officinale. Planta Med. 2003;69:587–8.PubMedCrossRefGoogle Scholar
  8. 8.
    Lin X, Sze SC-W, Tong Y, Zhang Z, Feng Y, Chen JP, et al. Protective effect of Dendrobium officinale polysaccharides on experimental Sjogren’s syndrome. J Compl Integr Med. 2010;7:1–14.Google Scholar
  9. 9.
    Xiao L, Ng TB, Feng YB, Yao T, Wong JH, Yao RM, et al. Dendrobium candidum extract increases the expression of aquaporin-5 in labial glands from patients with Sjogren’s syndrome. Phytomedicine. 2011;18:194–8.PubMedCrossRefGoogle Scholar
  10. 10.
    Roescher N, Tak PP, Illei GG. Cytokines in Sjogren’s syndrome: potential therapeutic targets. Ann Rheum Dis. 2010;69:945–8.PubMedCrossRefGoogle Scholar
  11. 11.
    Sisto M, Lisi S, Lofrumento D, D’Amore M, Scagliusi P, Mitolo V. Autoantibodies from Sjogren’s syndrome trigger apoptosis in salivary gland cell line. Ann N Y Acad Sci. 2007;1108:418–25.PubMedCrossRefGoogle Scholar
  12. 12.
    Ramos-Casals M, Font J. Primary Sjogren’s syndrome: current and emergent aetiopathogenic concepts. Rheumatology. 2005;44:1354–67.PubMedCrossRefGoogle Scholar
  13. 13.
    Ramos-Casals M, Tzioufas AG, Stone JH, Siso A, Bosch X. Treatment of primary Sjogren syndrome: a systematic review. JAMA. 2010;304:452–60.PubMedCrossRefGoogle Scholar
  14. 14.
    Kim JJ, Lee SB, Park JK, Yoo YD. TNF-alpha-induced ROS production triggering apoptosis is directly linked to Romo1 and Bcl-X(L). Cell Death Differ. 2010;17:1420–34.PubMedCrossRefGoogle Scholar
  15. 15.
    Beg AA, Baltimore D. An essential role for NF-kappaB in preventing TNF-alpha-induced cell death. Science. 1996;274:782–4.PubMedCrossRefGoogle Scholar
  16. 16.
    Ruben SM, Dillon PJ, Schreck R, Henkel T, Chen CH, Maher M, et al. Isolation of a rel-related human cDNA that potentially encodes the 65 kD subunit of NF-kappa B. Science. 1991;254:11.PubMedGoogle Scholar
  17. 17.
    Baud V, Karin M. Signal transduction by tumor necrosis factor and its relatives. Trends Cell Biol. 2001;11:372–7.PubMedCrossRefGoogle Scholar
  18. 18.
    Park JG, Yuk Y, Rhim H, Yi SY, Yoo YS. Role of p38 MAPK in the regulation of apoptosis signaling induced by TNF-alpha in differentiated PC12 cells. J Biochem Mol Biol. 2002;35:267–72.PubMedCrossRefGoogle Scholar
  19. 19.
    Ziv E, Rotem C, Miodovnik M, Ravid A, Koren R. Two modes of ERK activation by TNF in keratinocytes: different cellular outcomes and bi-directional modulation by vitamin D. J Cell Biochem. 2008;104:606–19.PubMedCrossRefGoogle Scholar
  20. 20.
    Jin Z, El-Deiry WS. Overview of cell death signaling pathways. Cancer Biol Ther. 2005;4:139–63.PubMedCrossRefGoogle Scholar
  21. 21.
    Shoji Y, Uedono Y, Ishikura H, Takeyama N, Tanaka T. DNA damage induced by tumour necrosis factor-alpha in L929 cells is mediated by mitochondrial oxygen radical formation. Immunology. 1995;84:543–8.PubMedGoogle Scholar
  22. 22.
    Sakon S, Xue X, Takekawa M, Sasazuki T, Okazaki T, Kojima Y, et al. NF-kappaB inhibits TNF-induced accumulation of ROS that mediate prolonged MAPK activation and necrotic cell death. EMBO J. 2003;22:3898–909.PubMedCrossRefGoogle Scholar
  23. 23.
    Herrera B, Alvarez AM, Sanchez A, Fernandez M, Roncero C, Benito M, et al. Reactive oxygen species (ROS) mediates the mitochondrial-dependent apoptosis induced by transforming growth factor (beta) in fetal hepatocytes. FASEB J. 2001;15:741–51.PubMedCrossRefGoogle Scholar
  24. 24.
    Steinfeld SD, Appelboom T, Delporte C. Treatment with infliximab restores normal aquaporin 5 distribution in minor salivary glands of patients with Sjogren’s syndrome. Arthritis Rheum. 2002;46:2249–51.PubMedCrossRefGoogle Scholar
  25. 25.
    Vosters JL, Yin H, Roescher N, Kok MR, Tak PP, Chiorini JA. Local expression of tumor necrosis factor-receptor 1:immunoglobulin G can induce salivary gland dysfunction in a murine model of Sjogren’s syndrome. Arthritis Res Ther. 2009;11:R189.PubMedCrossRefGoogle Scholar
  26. 26.
    Sisto M, Lisi S, Castellana D, Scagliusi P, D’Amore M, Caprio S, et al. Autoantibodies from Sjogren’s syndrome induce activation of both the intrinsic and extrinsic apoptotic pathways in human salivary gland cell line A-253. J Autoimmun. 2006;27:38–49.PubMedCrossRefGoogle Scholar
  27. 27.
    Lin X, Shaw PC, Sze SC, Yao T, Zhang Y. Dendrobium officinale polysaccharides ameliorate the abnormality of aquaporin 5, pro-inflammatory cytokines and inhibit apoptosis in the experimental Sjögren’s syndrome mice. Int Immunopharmacol. 2011;11:2025–32.PubMedCrossRefGoogle Scholar
  28. 28.
    Wu WL, Ho LJ, Chang DM, Chen CH, Lai JH. Triggering of DC migration by dengue virus stimulation of COX-2-dependent signaling cascades in vitro highlights the significance of these cascades beyond inflammation. Eur J Immunol. 2009;39:3413–22.PubMedCrossRefGoogle Scholar
  29. 29.
    Midwinter RG, Cheah FC, Moskovitz J, Vissers MC, Winterbourn CC. IkappaB is a sensitive target for oxidation by cell-permeable chloramines: inhibition of NF-kappaB activity by glycine chloramine through methionine oxidation. Biochem J. 2006;396:71–8.PubMedCrossRefGoogle Scholar
  30. 30.
    Song JX, Shaw PC, Sze CW, Tong Y, Yao XS, Ng TB, et al. Chrysotoxine, a novel bibenzyl compound, inhibits 6-hydroxydopamine induced apoptosis in SH-SY5Y cells via mitochondria protection and NF-kappaB modulation. Neurochem Int. 2010;57:676–89.PubMedCrossRefGoogle Scholar
  31. 31.
    Alvarado-Kristensson M, Porn-Ares MI, Grethe S, Smith D, Zheng L, Andersson T. p38 Mitogen-activated protein kinase and phosphatidylinositol 3-kinase activities have opposite effects on human neutrophil apoptosis. FASEB J. 2002;16:129–31.PubMedGoogle Scholar
  32. 32.
    Bradham CA, Qian T, Streetz K, Trautwein C, Brenner DA, Lemasters JJ. The mitochondrial permeability transition is required for tumor necrosis factor alpha-mediated apoptosis and cytochrome c release. Mol Cell Biol. 1998;18:6353–64.PubMedGoogle Scholar
  33. 33.
    Vander Heiden MG, Chandel NS, Schumacker PT, Thompson CB. Bcl-xL prevents cell death following growth factor withdrawal by facilitating mitochondrial ATP/ADP exchange. Mol Cell. 1999;3:159–67.PubMedCrossRefGoogle Scholar
  34. 34.
    Budihardjo I, Oliver H, Lutter M, Luo X, Wang X. Biochemical pathways of caspase activation during apoptosis. Annu Rev Cell Dev Biol. 1999;15:269–90.PubMedCrossRefGoogle Scholar
  35. 35.
    Ashkenazi A, Dixit VM. Apoptosis control by death and decoy receptors. Curr Opin Cell Biol. 1999;11:255–60.PubMedCrossRefGoogle Scholar
  36. 36.
    Wang Q, Gong Q, Wu Q, Shi J. Neuroprotective effects of Dendrobium alkaloids on rat cortical neurons injured by oxygen-glucose deprivation and reperfusion. Phytomedicine. 2010;17:108–15.PubMedCrossRefGoogle Scholar
  37. 37.
    Jiang MH, Zhu L, Jiang JG. Immunoregulatory actions of polysaccharides from Chinese herbal medicine. Expert Opin Ther Targ. 2010;14:1367–402.CrossRefGoogle Scholar
  38. 38.
    Chen HL, Li DF, Chang BY, Gong LM, Dai JG, Yi GF. Effects of Chinese herbal polysaccharides on the immunity and growth performance of young broilers. Poult Sci. 2003;82:364–70.PubMedGoogle Scholar
  39. 39.
    Lin X, Shaw PC, Sze SC, Tong Y, Zhang Y. Dendrobium officinale polysaccharides ameliorate the abnormality of aquaporin 5, pro-inflammatory cytokines and inhibit apoptosis in the experimental Sjogren’s syndrome mice. Int Immunopharmacol. 2011;11:2025–32.PubMedCrossRefGoogle Scholar
  40. 40.
    Song JX, Shaw PC, Wong NS, Sze CW, Yao XS, Tang CW, et al. Chrysotoxine, a novel bibenzyl compound selectively antagonizes MPP(+), but not rotenone, neurotoxicity in dopaminergic SH-SY5Y cells. Neurosci Lett. 2012;521:76–81.PubMedCrossRefGoogle Scholar
  41. 41.
    Micheau O, Tschopp J. Induction of TNF receptor I-mediated apoptosis via two sequential signaling complexes. Cell. 2003;114:181–90.PubMedCrossRefGoogle Scholar
  42. 42.
    Micheau O, Lens S, Gaide O, Alevizopoulos K, Tschopp J. NF-kappaB signals induce the expression of c-FLIP. Mol Cell Biol. 2001;21:5299–305.PubMedCrossRefGoogle Scholar
  43. 43.
    Schulze-Osthoff K, Ferrari D, Riehemann K, Wesselborg S. Regulation of NF-kappa B activation by MAP kinase cascades. Immunobiology. 1997;198:35–49.PubMedCrossRefGoogle Scholar
  44. 44.
    Vanden Berghe W, Plaisance S, Boone E, De Bosscher K, Schmitz ML, Fiers W, et al. p38 and extracellular signal-regulated kinase mitogen-activated protein kinase pathways are required for nuclear factor-kappaB p65 transactivation mediated by tumor necrosis factor. J Biol Chem. 1998;273:3285–90.PubMedCrossRefGoogle Scholar
  45. 45.
    Van Lint J, Agostinis P, Vandevoorde V, Haegeman G, Fiers W, Merlevede W, et al. Tumor necrosis factor stimulates multiple serine/threonine protein kinases in Swiss 3T3 and L929 cells. Implication of casein kinase-2 and extracellular signal-regulated kinases in the tumor necrosis factor signal transduction pathway. J Biol Chem. 1992;267:25916–21.PubMedGoogle Scholar
  46. 46.
    Chinnaiyan AM, O’Rourke K, Tewari M, Dixit VM. FADD, a novel death domain-containing protein, interacts with the death domain of Fas and initiates apoptosis. Cell. 1995;81:505–12.PubMedCrossRefGoogle Scholar
  47. 47.
    Lin E, Cavanaugh JE, Leak RK, Perez RG, Zigmond MJ. Rapid activation of ERK by 6-hydroxydopamine promotes survival of dopaminergic cells. J Neurosci Res. 2008;86:108–17.PubMedCrossRefGoogle Scholar
  48. 48.
    Kroemer G, Dallaporta B, Resche-Rigon M. The mitochondrial death/life regulator in apoptosis and necrosis. Annu Rev Physiol. 1998;60:619–42.PubMedCrossRefGoogle Scholar
  49. 49.
    Circu ML, Aw TY. Reactive oxygen species, cellular redox systems, and apoptosis. Free Radical Biol Med. 2010;48:749–62.CrossRefGoogle Scholar
  50. 50.
    Abramov AY, Duchen MR. Measurements of threshold of mitochondrial permeability transition pore opening in intact and permeabilized cells by flash photolysis of caged calcium. Method Mol Biol. 2011;793:299–309.CrossRefGoogle Scholar
  51. 51.
    Rauert H, Stuhmer T, Bargou R, Wajant H, Siegmund D. TNFR1 and TNFR2 regulate the extrinsic apoptotic pathway in myeloma cells by multiple mechanisms. Cell Death Dis. 2011;2:e194.PubMedCrossRefGoogle Scholar
  52. 52.
    Wicovsky A, Henkler F, Salzmann S, Scheurich P, Kneitz C, Wajant H. Tumor necrosis factor receptor-associated factor-1 enhances proinflammatory TNF receptor-2 signaling and modifies TNFR1-TNFR2 cooperation. Oncogene. 2009;28:1769–81.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Basel 2012

Authors and Affiliations

  • L. Xiang
    • 1
  • C. W. Stephen Sze
    • 1
  • T. B. Ng
    • 2
  • Y. Tong
    • 1
  • P. C. Shaw
    • 3
  • C. W. Sydney Tang
    • 4
  • Y. B. Kalin Zhang
    • 1
    Email author
  1. 1.School of Chinese MedicineThe University of Hong KongHong KongChina
  2. 2.School of Biomedicine ScienceHong KongChina
  3. 3.School of Life ScienceHong KongChina
  4. 4.Department of Medicine, Faculty of MedicineThe University of Hong KongHong KongChina

Personalised recommendations