Advertisement

Inflammation Research

, Volume 62, Issue 2, pp 133–143 | Cite as

Zip14 expression induced by lipopolysaccharides in macrophages attenuates inflammatory response

  • Ahmed Sayadi
  • Anh-Tuan Nguyen
  • Frederic A. Bard
  • Emilie A. Bard-Chapeau
Original Research Paper

Abstract

Objective and design

We investigated the role and regulation of zinc transporters in the activation of the inflammatory response in macrophages. Our exploratory computational study found that Zip14 (SLC39A14) was consistently up-regulated in activated macrophages; we therefore focused subsequently on that gene in the mechanistic study.

Material

The expression and function of Zip14 was assessed in primary macrophages obtained by in-vitro differentiation of monocytes from human blood.

Methods

Primary macrophages were subjected to treatments with lipopolysaccharides, cytokines, chemicals, and pharmacological agents. SLC39A14 and inflammatory cytokine gene expressions were assessed by RT-qPCR. Zip14 siRNA knockdown was performed to explore the gene function.

Results

Lipopolysaccharide’s inflammatory stimulus was a strong inducer of SLC39A14 mRNA expression in macrophages. This induction was dependent on calcium signaling, GC-rich DNA-binding, and NF-κB down-regulation. Impregnation of lipopolysaccharide-stimulated macrophages with the glucocorticoid dexamethasone further enhanced Zip14 expression while reducing interleukin-6 and tumor necrosis factor-α production. Zip14 knockdown in macrophages attenuated the expression and secretion of cytokines, indicating a buffering function for this zinc transporter.

Conclusions

Collectively, our results identified the zinc transporter Zip14 as expressed downstream of lipopolysaccharide signals in macrophages. Zip14 induction had a regulatory function in cytokine production.

Keywords

Lipopolysaccharide Macrophages Zip14 SLC39A14 Zinc transporter 

Notes

Acknowledgments

This work was supported by the Biomedical Research Council, Agency for Science, Technology and Research, Singapore.

References

  1. 1.
    Calder PC, Kew S. The immune system: a target for functional foods? Br J Nutr. 2002;88(Suppl 2):S165–77.PubMedCrossRefGoogle Scholar
  2. 2.
    Fabris N, Mocchegiani E. Zinc, human diseases and aging. Aging (Milano). 1995;7(2):77–93.Google Scholar
  3. 3.
    Leupold D, Poley JR, Meigel WN. Zinc therapy in acrodermatitis enteropathica. Helv Paediatr Acta. 1976;31(2):109–15.PubMedGoogle Scholar
  4. 4.
    Miller GG, Strittmatter WJ. Identification of human T cells that require zinc for growth. Scand J Immunol. 1992;36(2):269–77.PubMedCrossRefGoogle Scholar
  5. 5.
    Provinciali M, Di Stefano G, Fabris N. Dose-dependent opposite effect of zinc on apoptosis in mouse thymocytes. Int J Immunopharmacol. 1995;17(9):735–44.PubMedCrossRefGoogle Scholar
  6. 6.
    Truong-Tran AQ, Carter J, Ruffin RE, Zalewski PD. The role of zinc in caspase activation and apoptotic cell death. Biometals. 2001;14(3–4):315–30.PubMedCrossRefGoogle Scholar
  7. 7.
    Koh JY, Suh SW, Gwag BJ, He YY, Hsu CY, Choi DW. The role of zinc in selective neuronal death after transient global cerebral ischemia. Science. 1996;272(5264):1013–6.PubMedCrossRefGoogle Scholar
  8. 8.
    Vallee BL, Auld DS. Active zinc binding sites of zinc metalloenzymes. Matrix Suppl. 1992;1:5–19.PubMedGoogle Scholar
  9. 9.
    Nyborg JK, Peersen OB. That zincing feeling: the effects of EDTA on the behaviour of zinc-binding transcriptional regulators. Biochem J. 2004;381(Pt 3):e3–4.PubMedGoogle Scholar
  10. 10.
    Eide DJ. The SLC39 family of metal ion transporters. Pflugers Arch. 2004;447(5):796–800.PubMedCrossRefGoogle Scholar
  11. 11.
    Liuzzi JP, Cousins RJ. Mammalian zinc transporters. Annu Rev Nutr. 2004;24:151–72.PubMedCrossRefGoogle Scholar
  12. 12.
    Murgia C, Lang CJ, Truong-Tran AQ, Grosser D, Jayaram L, Ruffin RE, et al. Zinc and its specific transporters as potential targets in airway disease. Curr Drug Targets. 2006;7(5):607–27.PubMedCrossRefGoogle Scholar
  13. 13.
    Begum NA, Kobayashi M, Moriwaki Y, Matsumoto M, Toyoshima K, Seya T. Mycobacterium bovis BCG cell wall and lipopolysaccharide induce a novel gene, BIGM103, encoding a 7-TM protein: identification of a new protein family having Zn-transporter and Zn-metalloprotease signatures. Genomics. 2002;80(6):630–45.PubMedCrossRefGoogle Scholar
  14. 14.
    Liuzzi JP, Lichten LA, Rivera S, Blanchard RK, Aydemir TB, Knutson MD, et al. Interleukin-6 regulates the zinc transporter Zip14 in liver and contributes to the hypozincemia of the acute-phase response. Proc Natl Acad Sci USA. 2005;102(19):6843–8.PubMedCrossRefGoogle Scholar
  15. 15.
    Moshage H. Cytokines and the hepatic acute phase response. J Pathol. 1997;181(3):257–66.PubMedCrossRefGoogle Scholar
  16. 16.
    Nolan JP. The role of intestinal endotoxin in liver injury: a long and evolving history. Hepatology. 2010;52(5):1829–35.PubMedCrossRefGoogle Scholar
  17. 17.
    Matsumura T, Ito A, Takii T, Hayashi H, Onozaki K. Endotoxin and cytokine regulation of toll-like receptor (TLR) 2 and TLR4 gene expression in murine liver and hepatocytes. J Interferon Cytokine Res. 2000;20(10):915–21.PubMedCrossRefGoogle Scholar
  18. 18.
    Martinez FO, Gordon S, Locati M, Mantovani A. Transcriptional profiling of the human monocyte-to-macrophage differentiation and polarization: new molecules and patterns of gene expression. J Immunol. 2006;177(10):7303–11.PubMedGoogle Scholar
  19. 19.
    Buxade M, Lunazzi G, Minguillon J, Iborra S, Berga-Bolanos R, Del Val M, et al. Gene expression induced by Toll-like receptors in macrophages requires the transcription factor NFAT5. J Exp Med. 2012;209(2):379–93.PubMedCrossRefGoogle Scholar
  20. 20.
    Altemeier WA, Matute-Bello G, Gharib SA, Glenny RW, Martin TR, Liles WC. Modulation of lipopolysaccharide-induced gene transcription and promotion of lung injury by mechanical ventilation. J Immunol. 2005;175(5):3369–76.PubMedGoogle Scholar
  21. 21.
    Hammer M, Mages J, Dietrich H, Servatius A, Howells N, Cato AC, et al. Dual specificity phosphatase 1 (DUSP1) regulates a subset of LPS-induced genes and protects mice from lethal endotoxin shock. J Exp Med. 2006;203(1):15–20.PubMedCrossRefGoogle Scholar
  22. 22.
    Barish GD, Downes M, Alaynick WA, Yu RT, Ocampo CB, Bookout AL, et al. A nuclear receptor atlas: macrophage activation. Mol Endocrinol. 2005;19(10):2466–77.PubMedCrossRefGoogle Scholar
  23. 23.
    Ahn SY, Cho CH, Park KG, Lee HJ, Lee S, Park SK, et al. Tumor necrosis factor-alpha induces fractalkine expression preferentially in arterial endothelial cells and mithramycin A suppresses TNF-alpha-induced fractalkine expression. Am J Pathol. 2004;164(5):1663–72.PubMedCrossRefGoogle Scholar
  24. 24.
    Blume SW, Snyder RC, Ray R, Thomas S, Koller CA, Miller DM. Mithramycin inhibits SP1 binding and selectively inhibits transcriptional activity of the dihydrofolate reductase gene in vitro and in vivo. J Clin Invest. 1991;88(5):1613–21.PubMedCrossRefGoogle Scholar
  25. 25.
    Miller DM, Polansky DA, Thomas SD, Ray R, Campbell VW, Sanchez J, et al. Mithramycin selectively inhibits transcription of G-C containing DNA. Am J Med Sci. 1987;294(5):388–94.PubMedCrossRefGoogle Scholar
  26. 26.
    Ray R, Snyder RC, Thomas S, Koller CA, Miller DM. Mithramycin blocks protein binding and function of the SV40 early promoter. J Clin Invest. 1989;83(6):2003–7.PubMedCrossRefGoogle Scholar
  27. 27.
    Ray R, Thomas S, Miller DM. Mithramycin selectively inhibits the transcriptional activity of a transfected human c-myc gene. Am J Med Sci. 1990;300(4):203–8.PubMedCrossRefGoogle Scholar
  28. 28.
    Snyder RC, Ray R, Blume S, Miller DM. Mithramycin blocks transcriptional initiation of the c-myc P1 and P2 promoters. Biochemistry. 1991;30(17):4290–7.PubMedCrossRefGoogle Scholar
  29. 29.
    Thastrup O. Role of Ca2(+)-ATPases in regulation of cellular Ca2+ signalling, as studied with the selective microsomal Ca2+-ATPase inhibitor, thapsigargin. Agents Actions. 1990;29(1–2):8–15.PubMedCrossRefGoogle Scholar
  30. 30.
    Moore GA, McConkey DJ, Kass GE, O’Brien PJ, Orrenius S. 2,5-Di(tert-butyl)-1,4-benzohydroquinone–a novel inhibitor of liver microsomal Ca2+ sequestration. FEBS Lett. 1987;224(2):331–6.PubMedCrossRefGoogle Scholar
  31. 31.
    Hakii H, Fujiki H, Suganuma M, Nakayasu M, Tahira T, Sugimura T, et al. Thapsigargin, a histamine secretagogue, is a non-12-O-tetradecanoylphorbol-13-acetate (TPA) type tumor promoter in two-stage mouse skin carcinogenesis. J Cancer Res Clin Oncol. 1986;111(3):177–81.PubMedCrossRefGoogle Scholar
  32. 32.
    Jackson TR, Patterson SI, Thastrup O, Hanley MR. A novel tumour promoter, thapsigargin, transiently increases cytoplasmic free Ca2+ without generation of inositol phosphates in NG115-401L neuronal cells. Biochem J. 1988;253(1):81–6.PubMedGoogle Scholar
  33. 33.
    Myers JT, Swanson JA. Calcium spikes in activated macrophages during Fcgamma receptor-mediated phagocytosis. J Leukoc Biol. 2002;72(4):677–84.PubMedGoogle Scholar
  34. 34.
    Feher JJ, Lipford GB. Mechanism of action of ryanodine on cardiac sarcoplasmic reticulum. Biochim Biophys Acta. 1985;813(1):77–86.PubMedCrossRefGoogle Scholar
  35. 35.
    Pian-Smith MC, Yada T, Yaney GC, Abdel el Motal SM, Wiedenkeller DE, Sharp GW. Mobilization of Ca2+ from intracellular stores of pancreatic beta-cells by the calcium store blocker TMB-8. Endocrinology. 1988;123(4):1984–91.PubMedCrossRefGoogle Scholar
  36. 36.
    Takahashi M, Tanzawa K, Takahashi S. Adenophostins, newly discovered metabolites of Penicillium brevicompactum, act as potent agonists of the inositol 1,4,5-trisphosphate receptor. J Biol Chem. 1994;269(1):369–72.PubMedGoogle Scholar
  37. 37.
    Mattie M, Brooker G, Spiegel S. Sphingosine-1-phosphate, a putative second messenger, mobilizes calcium from internal stores via an inositol trisphosphate-independent pathway. J Biol Chem. 1994;269(5):3181–8.PubMedGoogle Scholar
  38. 38.
    Bates MD, Conn PM. Calcium mobilization in the pituitary gonadotrope: relative roles of intra- and extracellular sources. Endocrinology. 1984;115(4):1380–5.PubMedCrossRefGoogle Scholar
  39. 39.
    Knoell DL, Liu MJ. Impact of zinc metabolism on innate immune function in the setting of sepsis. Int J Vitam Nutr Res. 2010;80(4–5):271–7.PubMedGoogle Scholar
  40. 40.
    Kawai T, Akira S. TLR signaling. Cell Death Differ. 2006;13(5):816–25.PubMedCrossRefGoogle Scholar
  41. 41.
    Bao S, Liu MJ, Lee B, Besecker B, Lai JP, Guttridge DC, et al. Zinc modulates the innate immune response in vivo to polymicrobial sepsis through regulation of NF-kappa B. Am J Physiol Lung Cell Mol Physiol. 2010;298(6):L744–54.PubMedCrossRefGoogle Scholar
  42. 42.
    Bagley KC, Abdelwahab SF, Tuskan RG, Lewis GK. Calcium signaling through phospholipase C activates dendritic cells to mature and is necessary for the activation and maturation of dendritic cells induced by diverse agonists. Clin Diagn Lab Immunol. 2004;11(1):77–82.PubMedGoogle Scholar
  43. 43.
    Chow CW, Grinstein S, Rotstein OD. Signaling events in monocytes and macrophages. New Horiz. 1995;3(2):342–51.PubMedGoogle Scholar
  44. 44.
    Hoffmann A, Kann O, Ohlemeyer C, Hanisch UK, Kettenmann H. Elevation of basal intracellular calcium as a central element in the activation of brain macrophages (microglia): suppression of receptor-evoked calcium signaling and control of release function. J Neurosci. 2003;23(11):4410–9.PubMedGoogle Scholar
  45. 45.
    Smith JB, Herschman HR. Targeted identification of glucocorticoid-attenuated response genes: in vitro and in vivo models. Proc Am Thorac Soc. 2004;1(3):275–81.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Basel 2012

Authors and Affiliations

  • Ahmed Sayadi
    • 1
  • Anh-Tuan Nguyen
    • 1
  • Frederic A. Bard
    • 1
    • 2
  • Emilie A. Bard-Chapeau
    • 1
  1. 1.Institute Molecular and Cell BiologyAgency for Science, Technology and Research (A*STAR)SingaporeSingapore
  2. 2.Department of BiochemistryNational University of SingaporeSingaporeSingapore

Personalised recommendations