Inflammation Research

, Volume 61, Issue 8, pp 875–887 | Cite as

The anti-arthritic and anti-oxidative effect of NBD (6-nitro-1,3-benzodioxane) in adjuvant-induced arthritis (AIA) in rats

  • Syed Uzair Ali Shah
  • Nadeem Ashraf
  • Zahid H. Soomro
  • Muhammad Raza Shah
  • Nurul Kabir
  • Shabana Usman SimjeeEmail author
Original Research Paper



The present study evaluated the anti-arthritic and anti-oxidative effects of 6-nitro-1,3-benzodioxane in the adjuvant-induced arthritis model in rats.


Arthritis was induced in female rats by intradermal injection of MT37Ra. Arthritis was evaluated by arthritic score, body weight loss, paw volume measurement, and histological changes. The plantar test was used to evaluate the effect of NBD on hyperalgesia.


The hyperalgesia (p < 0.0001) and hind paw inflammation (p < 0.034) was significantly decreased with parallel increase in the body weight of the NBD-treated (25 mg/kg) group compared to arthritic control rats. The antioxidant activity analysis demonstrated that the treatment of NBD significantly suppressed the levels of nitric oxide (p < 0.001) and peroxide (p < 0.002) with a significant increase in the glutathione (p < 0.021) compared to the arthritic control group. Since the IL-1β and TNF-α are key pro-inflammatory cytokines in arthritis, we therefore measured their levels in the serum samples. In comparison to the arthritic control group, the NBD treatment significantly reduced the levels of IL-1β (p < 0.003) and TNF-α (p < 0.026).


Our results suggests that NBD is an anti-arthritic agent that not only reduces the severity of the disease process but also affects contributing factors of arthritic inflammation including free radicals and inflammatory cytokines production.


Adjuvant-induced arthritis 6-Nitro-1,3-Benzodioxane Tumor necrosis factor α Interleukin-1β Reactive oxygen species 



Adjuvant-induced arthritis


Complete Freund’s adjuvant


Interleukin 1 beta


Nitric oxide


Non-steroidal anti-inflammatory drugs




Reactive oxygen species


Reactive nitrogen species


Tumor necrosis factor-α


  1. 1.
    Firestein GS. Etiology and pathogenesis of rheumatoid arthritis. In: Ruddy S, Harris JED, Sledge CB, Budd RC, Sergent JS, editors. Kelley’s text book of rheumatology, vol. 2. Philadelphia: Saunders; 2001. p. 921–6.Google Scholar
  2. 2.
    Verbnrgge LM, Patrick DL. Seven chronic conditions: their impact on US adults’ activity levels and use of medical Services. Am J Public Health. 1995;85:173–82.CrossRefGoogle Scholar
  3. 3.
    Lard LR, Huizinga TWJ, Hazes JMW, Vliet Vlieland TPM. Delayed referral of female rheumatoid arthritis patients. J Rheumatol. 2001; 28:2190–2.Google Scholar
  4. 4.
    CDC. Prevalence of doctor-diagnosed arthritis and arthritis-attributable activity limitation—United States, 2007–2009. MMWR. 2010; 59:1261–5.Google Scholar
  5. 5.
    Feldmann M, Brennan FM, Maini RN. Rheumatoid arthritis. Cell. 1996;85:307.PubMedCrossRefGoogle Scholar
  6. 6.
    Nagase H, Woessner JF Jr. Matrix metalloproteinases. J Biol Chem. 1999;274:21491–4.PubMedCrossRefGoogle Scholar
  7. 7.
    Brinckerhoff CE, Sporn MB. Retinoids and rexinoids for the 21st century. J Rheumatol. 2003; 30:211–13.Google Scholar
  8. 8.
    Kaplan JC, Valdez R, Chandrasekaran H, Eibel K, Mikecz TT. Glant and A. Finnegan, Th1 and Th2 cytokines regulate proteoglycan-specific autoantibody isotypes and arthritis. Arthritis Res. 2002;4:545–58.CrossRefGoogle Scholar
  9. 9.
    Maini RN, Taylor PC. Anti-cytokines therapy for rheumatoid arthritis. Annu Rev Med. 2000;51:207–29.PubMedCrossRefGoogle Scholar
  10. 10.
    Van den berg WB. Anti-cytokine therapy in chronic destructive arthritis. J Arthritis Res. 2001; 3:18–26.Google Scholar
  11. 11.
    Goronzy JJ, Weyand CM. Thymic function and peripheral T-cell homeostasis in rheumatoid arthritis. Trends Immunol. 2001;22:251–5.PubMedCrossRefGoogle Scholar
  12. 12.
    Kohem CL, Brezinschek RI, Wisbey H, Tortorella C, Lipsky PE, Oppenheimer-Marks N. Enrichment of differentiated CD45RBdim, CD27 memory T cells in the peripheral blood, synovial fluid, and synovial tissue of patients with rheumatoid arthritis. Arthritis Rheum. 1996;39:844–54.PubMedCrossRefGoogle Scholar
  13. 13.
    Falgarone G, Semerano L, Rullé S, Boissier MC. Targeting lymphocyte activation to treat rheumatoid arthritis. Joint Bone Spine. 2009;76:327–32.PubMedCrossRefGoogle Scholar
  14. 14.
    Abreu JR, Grabiec AM, Krausz S, Spijker R, Burakowski T, Maslinski W, et al. The presumed hyporesponsive behavior of rheumatoid arthritis T lymphocytes can be attributed to spontaneous ex vivo apoptosis rather than defects in T cell receptor signaling. J Immunol. 2009;183:621–30.PubMedCrossRefGoogle Scholar
  15. 15.
    Vandooren B, Noordenbos T, Ambarus C, Krausz S, Cantaert T, Yeremenko N, et al. Absence of a classically activated macrophage cytokine signature in peripheral spondylarthritis, including psoriatic arthritis. Arthritis Rheum. 2009;60:966–75.PubMedCrossRefGoogle Scholar
  16. 16.
    Panayi GS, Lanchbury JS, Kingsley GH. The importance of the T cell in initiating and maintaining the chronic synovitis of rheumatoid arthritis. Arthritis Rheum. 1992;35:729–35.PubMedCrossRefGoogle Scholar
  17. 17.
    Szekanecz Z, Koch AE, Kunkel SL, Strieter RM. Cytokines in rheumatoid arthritis: potential targets for pharmacological intervention. Drugs Aging. 1998;12:377–90.PubMedCrossRefGoogle Scholar
  18. 18.
    Gravallese EM, Goldring SR. Cellular mechanism and the role of cytokines in erosions in rheumatoid arthritis. Arthritis Rheum. 2000;43:2143–51.PubMedCrossRefGoogle Scholar
  19. 19.
    Fan AY, Lao L, Zhang RX, Zhou AN, Wang LB, Moudgil KD, et al. Effects of an acetone extract of Boswellia carterii Birdw. (Burseraceae) gum resin on adjuvant-induced arthritis in lewis rats. J Ethnopharmacol. 2005;101:104–9.PubMedCrossRefGoogle Scholar
  20. 20.
    Cai X, Zhou H, Wong YF, Xie Y, Liu ZQ, Jiang ZH, et al. Suppression of the onset and progression of collagen-induced arthritis in rats by QFGJS, a preparation from an anti-arthritic Chinese herbal formula. J Ethnopharmacol. 2007;110:39–48.PubMedCrossRefGoogle Scholar
  21. 21.
    Freeman BA, Crapo JD. Biology of disease: free radicals and tissue injury. Lab Invest. 1982; 47:412–26.Google Scholar
  22. 22.
    Valko M, Leibfritz D, Moncol J, Cronin MT, Mazur M, Telser J. Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol. 2007;39:44–84.PubMedCrossRefGoogle Scholar
  23. 23.
    Blake DR, Merry P, Unsworth J, Kidd BL, Outhwaite JM, Ballard R, et al. Hypoxic-reperfusion injury in the inflamed human joint. Lancet. 1989; i:289–93.Google Scholar
  24. 24.
    Cadenas E. Basic mechanisms of antioxidant activity. BioFactors. 1997;6:391–7.PubMedCrossRefGoogle Scholar
  25. 25.
    Heliovaara M, Knekt P, Aho K, Aaran RK, Alfthan G, Aromaa A. Serum antioxidants and risk of rheumatoid arthritis. Ann Rheum Dis. 1994;53:51–3.PubMedCrossRefGoogle Scholar
  26. 26.
    Gambhir JK, Lali P, Jain AK. Correlation between blood antioxidant levels and lipid peroxidation in rheumatoid arthritis. Clin Biochem. 1997;30:351–5.PubMedCrossRefGoogle Scholar
  27. 27.
    Sakurai H, Kohsaka H, Liu M, Higashiyama H, Hirata Y, Kanno K, et al. Nitric oxide production and inducible nitric oxide synthase expression inflammatory arthritis. J Clin Invest. 1995;96:2357–63.PubMedCrossRefGoogle Scholar
  28. 28.
    Wallace JL. Nitric oxide as a regulator of inflammatory processes. Mem Inst Oswaldo Cruz. 2005;100:5–9.PubMedCrossRefGoogle Scholar
  29. 29.
    Kizilntuc A, Cogalgil S, Cerrahoglu L. Carnitine and antioxidants levels in patients with rheumatoid arthritis. Scand J Rheumatol. 1998;27:441–5.CrossRefGoogle Scholar
  30. 30.
    Hassan MQ, Hadi RA, Al-Rawi ZS, Padron VA, Stohs SJ. The glutathione defense system in the pathogenesis of rheumatoid arthritis. J Appl Toxicol. 2001;21:69–73.PubMedCrossRefGoogle Scholar
  31. 31.
    Masella R, Benedetto RD, Vari R, Filesi C, Giovannini C. Novel mechanisms of natural antioxidant compounds in biological systems: Involvement of glutathione and glutathione-related enzymes. J Nutr Biochem. 2005;16:577–86.PubMedCrossRefGoogle Scholar
  32. 32.
    Kamanli A, Naziroglu M, Aydilek N, Hacievliyagil C. Plasma lipid peroxidation and antioxidant levels in patients with rheumatoid arthritis. Cell Biochem Funct. 2004;22:53–7.PubMedCrossRefGoogle Scholar
  33. 33.
    Los M, Dröge W, Stricker K, Baeuerle PA, Schulze-Osthoff K. Hydrogen peroxide as a potent activator of T lymphocyte functions. Eur J Immunol. 1995;25:159–65.PubMedCrossRefGoogle Scholar
  34. 34.
    Tinker AC, Wallace AV. Selective inhibitors of inducible nitric oxide synthase: potential agents for the treatment of inflammatory diseases? Curr Top Med Chem. 2006;6:77–92.PubMedCrossRefGoogle Scholar
  35. 35.
    Ali MH, Schlidt SA, Chandel NS, Hynes KL, Schumacker PT, Gewertz BL. Endothelial permeability and IL-6 production during hypoxia: role of ROS in signal transduction. Am J Physiol. 1999;277:L1057–65.PubMedGoogle Scholar
  36. 36.
    Chua CC, Hamdy RC, Chua BH. Upregulation of vascular endothelial growth factor by H2O2 in rat heart endothelial cells. Free Radic Biol Med. 1998;25(8):891–7.PubMedCrossRefGoogle Scholar
  37. 37.
    Simon AR, Rai U, Fanburg BL, Cochran BH. Activation of the JAK-STAT pathway by reactive oxygen species. Am J Physiol. 1998;275:C1640–52.PubMedGoogle Scholar
  38. 38.
    Sundaresan M, Yu ZX, Ferrans VJ, Irani K, Finkel T. Requirement for generation of H2O2 for platelet-derived growth factor signal transduction. Science. 1995;270:296–9.PubMedCrossRefGoogle Scholar
  39. 39.
    Feldmann M, Brennan FM, Maini RN. Role of cytokines in rheumatoid arthritis. Annu Rev Immunol. 1996;14:397–440.PubMedCrossRefGoogle Scholar
  40. 40.
    Severn PS, Fraser SG. Bilateral cataracts and glaucoma induced by long-term use of oral prednisolone bough over the internet. Lancet. 2006;368:618.PubMedCrossRefGoogle Scholar
  41. 41.
    Biskupiak JE, Brixner DI, Howard KB, Oderda GM. Gastrointestinal complications of over-the-counter nonsteroidal antiinflammatory drugs. J Pain Palliat Care Pharmacother. 2006;20:7–14.PubMedCrossRefGoogle Scholar
  42. 42.
    Hinz B, Brune K. Pain and osteoarthritis: new drugs and mechanisms. Curr Opin Rheumatol. 2004;16:628–33.PubMedCrossRefGoogle Scholar
  43. 43.
    Schuna AA, Megeff C. New drugs for the treatmentof rheumatoid arthritis. Am J Health Syst Pharm. 2000;57:225–34.PubMedGoogle Scholar
  44. 44.
    Meyer-Kirchrath J, Schrör K. Cyclooxygenase-2 inhibition and side-effects of non-steroidal anti-inflammatory drugs in the gastrointestinal tract. Curr Med Chem. 2000;7:1121–9.PubMedGoogle Scholar
  45. 45.
    Lester RS, Knowles SR, Shear NH. The risks of systemic corticosteroid use. Dermatol Clin. 1998;16:277–87.PubMedGoogle Scholar
  46. 46.
    Lanza FL. Endoscopic studies of gastric and duodenal injury after the use of ibuprofen, aspirin, and other nonsteroidal anti-inflammatory agents. Am J Med. 1984;77:19–24.PubMedCrossRefGoogle Scholar
  47. 47.
    Mamdani M, Juurlink DN, Lee DS, et al. Cyclo-oxygenase-2 inhibitors versus non-selective non-steroidal anti-inflammatory drugs and congestive heart failure outcomes in elderly patients: a population based cohort study. Lancet. 2004;363:1751–6.PubMedCrossRefGoogle Scholar
  48. 48.
    Santana-Sabagun E, Weisman MH. Nonsteroidal anti-inflammatory drugs. In: Ruddy S, Harris JED, Sledge CB, Budd RC, Sergent JS, editors. Kelly’s textbook of rheumatology, vol. 1. Philadelphia: Saunders; 2001. p. 799–822.Google Scholar
  49. 49.
    Newman NM, Ling RSM. Acetabular bone destruction related to non-steroidal anti-inflammatory drugs. Lancet. 1985;2:11–4.PubMedCrossRefGoogle Scholar
  50. 50.
    Anastassiades T, Chopra R, Law C, Wong E. In vitro suppression of transforming growth factor-b induced stimulation of glycosaminoglycan synthesis by acetylsalicylic acid and its reversal by misoprostol. J Rheumatol. 1998;25:1962–7.PubMedGoogle Scholar
  51. 51.
    Satoh Y, Powers C, Toledo LM, Kowalski TJ, Peters PA, et al. Derivatives of 2-[N-(aminocarbonyl)-N-hydroxyamino]methyl]-1,4-benzodioxan as orally active 5-lipoxygenase inhibitors. J Med Chem. 1995;38:68–75.PubMedCrossRefGoogle Scholar
  52. 52.
    Manghisi E, Salimbeni A. United States Patents. 1976; Patent number 3969368.Google Scholar
  53. 53.
    Avakyan AS, Vartanyan SO, Markaryan EA. Biologically active 2-substituted 1,4-benzodioxanes (review). Pharm Chem J. 1988;22:600–11.CrossRefGoogle Scholar
  54. 54.
    Labanauskas LK, Brukshtus AB, Gaidelis PG, Udrenaite EB, Daukshas VK. Synthesis and antiinflammatory activity of some new derivatives of 6-benzoyl-1,4-benzodioxane. Pharm Chem J. 1999;33:259–60.CrossRefGoogle Scholar
  55. 55.
    Marrs TC, Bright JE, Swanston DW. Acute oral toxicity of 4-dimethylaminophenol to the gastrointestinal tract, liver and kidney of the rat. Arch Toxicol. 1982;50:89–92.PubMedCrossRefGoogle Scholar
  56. 56.
    Zimmermann M. Ethical guidelines for investigations of experimental pain in conscious animals. Pain. 1983;16:109–10.PubMedCrossRefGoogle Scholar
  57. 57.
    Bakharevski O, Stein-Oakley AN, Thomson NM, Ryan PFJ. Collagen-induced arthritis in rats: contrasting effect of subcutaneous versus intradermal inoculation of type II collagen. J Rheumatol. 1998;25:1945–52.PubMedGoogle Scholar
  58. 58.
    Hargreaves K, Dubner R, Brown F, Flores C, Joris J. A new and sensitive method for measuring thermal nociception in cutaneous hyperalgesia. Pain. 1988;32:77–88.PubMedCrossRefGoogle Scholar
  59. 59.
    Brachertz D, Mitchell GF, MacKay IR. Antigen-induced arthritis in mice: induction of arthritis in various strains of mice. Arthritis Rheum. 1977;20:841–50.CrossRefGoogle Scholar
  60. 60.
    Bendele A, McAbee T, Sennello G, Frazier J, Chlipala E, McCabe D. Efficacy of sustained levels of interleukin-1 receptor antagonist in animal models of arthritis. Arthritis Rheum. 1999;43:498–506.CrossRefGoogle Scholar
  61. 61.
    Glenn EM, Gray J. Adjuvant-induced polyarthritis in rats: biologic and histologic background. Am J Vet Res. 1965;26:1180–94.PubMedGoogle Scholar
  62. 62.
    Pearson CM, Wood FD. Studies of arthritis and other lesions induced in rats by the injection of Mycobacterial adjuvant: pathologic details of the arthritis and spondylitis. Am J Pathol. 1963;42:73–95.PubMedGoogle Scholar
  63. 63.
    Sluka KA, Willis WD, Westlund KN. The role of dorsal root reflexes in neurogenic inflammation. Pain Forum. 1995;4:141–9.CrossRefGoogle Scholar
  64. 64.
    Ghirnikar RS, Lee YL, Eng LF. Inflammation in traumatic brain injury: role of cytokines and chemokines. Neurochem Res. 1998;23:329–40.PubMedCrossRefGoogle Scholar
  65. 65.
    Yaksh TL, Hua XY, Kalcheva I, Nozaki-Taguchi N, Marsala M. The spinal biology in humans and animals of pain states generated by persistent small afferent input. Proc Natl Acad Sci USA. 1999;96:7680–6.PubMedCrossRefGoogle Scholar
  66. 66.
    McHugh JM, McHugh WB. Pain: neuroanatomy, chemical mediators, and clinical implications. AACN Clin Issues. 2000;11:168–78.PubMedCrossRefGoogle Scholar
  67. 67.
    Boddeke EW. Involvement of chemokines in pain. Eur J Pharmacol. 2001;429:115–9.PubMedCrossRefGoogle Scholar
  68. 68.
    Ma W, Eisenach JC. Role for both spinal cord COX-1 and COX-2 in maintenance of mechanical hypersensitivity following peripheral nerve injury. Brain Res. 2002;937:94–9.PubMedCrossRefGoogle Scholar
  69. 69.
    Goodis HE, Bowles WR, Hargreaves KM. Prostaglandin E2 enhances bradykinin-evoked iCGRP release in bovine dental pulp. J Dent Res. 2000;79:1604–7.PubMedCrossRefGoogle Scholar
  70. 70.
    Almeida IC, Camargo MM, Procopio DO, Silva LS, Mehlert A, Travassos LR, et al. Highly purified glycosylphosphatidylinositols from Trypanosoma cruzi are potent proinflammatory agents. EMBO J. 2000;19:1476–85.PubMedCrossRefGoogle Scholar
  71. 71.
    Lane NE, Thompson JM. Management of osteoarthritis in the primary-care setting: an evidence based approach to treatment. Am J Med. 1997;103:25S–30S.PubMedCrossRefGoogle Scholar
  72. 72.
    Bighetti EJ, Hiruma-Lima CA, Gracioso JS, Arm SB. Anti- inflammatory and antinociceptive effect in redents of the essential oil of Croton Cajucara Benth. J Pharm Pharmacol. 1999;51:1447–53.PubMedCrossRefGoogle Scholar
  73. 73.
    Jett MF, Ramesha CS, Brown CD, Chiu S, Emmett C, Voronin T, et al. Characterization of the analgesic and anti-inflammatory activities of ketorolac and its enantiomers in the rat. J Pharmacol Exp Ther. 1999;288:1288–97.PubMedGoogle Scholar
  74. 74.
    Gupta PK, Varshney RK, Sharma PC, Ramesh B. Molecular markers and their applications in wheat breeding. Plant Breed. 1999;118:369–90.CrossRefGoogle Scholar
  75. 75.
    Parnham MJ. Benefits and risks of the squeezed sap of the purple coneflower (Echinacea purpurea) for long-term oral immunostimulant therapy. In: Wagner H, editor. Immunomodulatory Agents from Plants. Birkhauser, Boston 1999; 119–135.Google Scholar
  76. 76.
    Martinez A, Anllo-Vento L, Sereno MI, Frank LR, Buxton RB, Dubowitz DJ, et al. Involvement of striate and extrastriate visual cortical areas in spatial attention. Nat Neurosci. 1999;2:364–9.PubMedCrossRefGoogle Scholar
  77. 77.
    Wong YF, Zhou H, Wang JR, Xie Y, Xu HX, Liu L. Anti-inflammatory and analgesic effects and molecular mechanisms of JCICM-6, a purified extract derived from an anti-arthritic Chinese herbal formula. Phytomed. 2008;15:416–26.CrossRefGoogle Scholar
  78. 78.
    Bauerova K, Bezek A. Role of reactive oxygen and nitrogen species in etiopathogenesis of rheumatoid arthritis. Gen Physiol Biophys. 1999;18:15–20.PubMedGoogle Scholar
  79. 79.
    Feldmann M, Brennan FM, Foxwell BM, Maini RN. The role of TNF-alpha and IL-1 in rheumatoid arthritis. Curr Dir Autoimmun. 2001;3:188–99.PubMedCrossRefGoogle Scholar
  80. 80.
    Knight JA. Free radicals, antioxidants, and the immune system. Ann Clin Lab Sci. 2000;30:145–58.PubMedGoogle Scholar
  81. 81.
    Borel JP, Monboisse JC. Effect of oxygen free radicals on collagen in inflammation. Ann Biol Clin. 1986;44:260–5.Google Scholar
  82. 82.
    Monboisse JC, Poulin G, Braquet P, Randoux A, Ferradini C, Borel JP. Effect of oxy radicals on several types of collagen. Int J Tissue React. 1984;6:385–90.PubMedGoogle Scholar
  83. 83.
    Monboisse JC, Gardes-Albert M, Randoux A, Borel JP, Ferradini C. Collagen degradation by superoxide anion in pulse and gamma radiolysis. Biochim Biophys Acta. 1988;965:29–35.PubMedCrossRefGoogle Scholar
  84. 84.
    Iyama S, Okamoto T, Sato T, Yamauchi N, Sato Y, Sasaki K, et al. Treatment of murine collagen-induced arthritis by ex vivo extracellular superoxide dismutase gene transfer. Arthritis Rheum. 2001;44:2160–7.PubMedCrossRefGoogle Scholar
  85. 85.
    Salvemini D, Ischiropoulos H, Cuzzocrea S. Roles of nitric oxide and superoxide in inflammation. Methods Mol Biol. 2003;225:291–303.PubMedGoogle Scholar
  86. 86.
    Fahim AT, Abd-El Fattah AA, Agha AM, Gad MZ. Effect of pumpkin-seed oil on the level of free radical scavengers induced during adjuvant-arthritis in rats. Pharmacol Res. 1995; 31(1):73–9.Google Scholar
  87. 87.
    McCord JM. Free radicals and inflammation: protection of synovial fluid by superoxide dismutase. Science. 1974;185:529–31.PubMedCrossRefGoogle Scholar
  88. 88.
    Greenwald RA, Moy WW. Effect of oxygen-derived free radicals on hyaluronic acid. Arthritis Rheum. 1980;23:455–63.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Basel AG 2012

Authors and Affiliations

  • Syed Uzair Ali Shah
    • 1
  • Nadeem Ashraf
    • 1
  • Zahid H. Soomro
    • 1
  • Muhammad Raza Shah
    • 1
  • Nurul Kabir
    • 2
  • Shabana Usman Simjee
    • 1
    • 2
    Email author
  1. 1.H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological SciencesUniversity of KarachiKarachiPakistan
  2. 2.Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological SciencesUniversity of KarachiKarachiPakistan

Personalised recommendations