Inflammation Research

, Volume 61, Issue 7, pp 759–773

Modelling experimental uveitis: barrier effects in autoimmune disease

  • David Nicholson
  • Emma C. Kerr
  • Owen G. Jepps
  • Lindsay B. Nicholson
Original Research Paper

Abstract

Objective and design

A mathematical analysis of leukocytes accumulating in experimental autoimmune uveitis (EAU), using ordinary differential equations (ODEs) and incorporating a barrier to cell traffic.

Materials and subjects

Data from an analysis of the kinetics of cell accumulation within the eye during EAU.

Methods

We applied a well-established mathematical approach that uses ODEs to describe the behaviour of cells on both sides of the blood–retinal barrier and compared data from the mathematical model with experimental data from animals with EAU.

Results

The presence of the barrier is critical to the ability of the model to qualitatively reproduce the experimental data. However, barrier breakdown is not sufficient to produce a surge of cells into the eye, which depends also on asymmetry in the rates at which cells can penetrate the barrier. Antigen-presenting cell (APC) generation also plays a critical role and we can derive from the model the ratio for APC production under inflammatory conditions relative to production in the resting state, which has a value that agrees closely with that found by experiment.

Conclusions

Asymmetric trafficking and the dynamics of APC production play an important role in the dynamics of cell accumulation in EAU.

Keywords

Mathematical modelling Autoimmunity Barrier permeability Blood–retinal barrier 

References

  1. 1.
    Kuchroo VK, Anderson AC, Waldner H, Munder M, Bettelli E, Nicholson LB. T cell response in experimental autoimmune encephalomyelitis (EAE): role of self and cross-reactive antigens in shaping, tuning, and regulating the autopathogenic T cell repertoire. Annu Rev Immunol. 2002;20(1):101–23.PubMedCrossRefGoogle Scholar
  2. 2.
    Xu H, Forrester JV, Liversidge J, Crane IJ. Leukocyte trafficking in experimental autoimmune uveitis: breakdown of blood-retinal barrier and upregulation of cellular adhesion molecules. Invest Ophthalmol Vis Sci. 2003;44(1):226–34.PubMedCrossRefGoogle Scholar
  3. 3.
    Kerr EC, Raveney BJE, Copland DA, Dick AD, Nicholson LB. Analysis of retinal cellular infiltrate in experimental autoimmune uveoretinitis reveals multiple regulatory cell populations. J Autoimmun. 2008;31:354–61.PubMedCrossRefGoogle Scholar
  4. 4.
    Raveney BJE, Copland DA, Nicholson LB, Dick AD. Fingolimod (FTY720) as an acute rescue therapy for intraocular inflammatory disease. Arch Ophthalmol. 2008;126:1390–5.PubMedCrossRefGoogle Scholar
  5. 5.
    Shao H, Shi H, Kaplan HJ, Sun D. Chronic recurrent autoimmune uveitis with progressive photoreceptor damage induced in rats by transfer of IRBP-specific T cells. J Neuroimmunol. 2005;163(1–2):102–9.PubMedCrossRefGoogle Scholar
  6. 6.
    Trudeau JD, Kelly-Smith C, Verchere CB, Elliott JF, Dutz JP, Finegood DT, Santamaria P, Tan R. Prediction of spontaneous autoimmune diabetes in NOD mice by quantification of autoreactive T cells in peripheral blood. J Clin Invest. 2003;111(2):217–23.PubMedGoogle Scholar
  7. 7.
    Butcher EC, Picker LJ. Lymphocyte homing and homeostasis. Science. 1996;272(5258):60–7.PubMedCrossRefGoogle Scholar
  8. 8.
    Bradley LM. Migration and T-lymphocyte effector function. Curr Opin Immunol. 2003;15(3):343–8.PubMedCrossRefGoogle Scholar
  9. 9.
    Ley K, Laudanna C, Cybulsky MI, Nourshargh S. Getting to the site of inflammation: the leukocyte adhesion cascade updated. Nat Rev Immunol. 2007;7(9):678–89.PubMedCrossRefGoogle Scholar
  10. 10.
    Wodarz D, Nowak MA. Mathematical models of HIV pathogenesis and treatment. BioEssays. 2002;24(12):1178–87.PubMedCrossRefGoogle Scholar
  11. 11.
    Perelson AS. Modelling viral and immune system dynamics. Nat Rev Immunol. 2002;2(1):28–36.PubMedCrossRefGoogle Scholar
  12. 12.
    Antia R, Ganusov VV, Ahmed R. The role of models in understanding CD8+ T-cell memory. Nat Rev Immunol. 2005;5:101–11.PubMedCrossRefGoogle Scholar
  13. 13.
    Iwami S, Takeuchi Y, Miura Y, Sasaki T, Kajiwara T. Dynamical properties of autoimmune disease models: tolerance, flare-up, dormancy. J Theor Biol. 2007;246(4):646–59.PubMedCrossRefGoogle Scholar
  14. 14.
    Raveney BJE, Copland DA, Calder CJ, Dick AD, Nicholson LB. TNFR1 signalling is a critical checkpoint for developing macrophages that control of T-cell proliferation. Immunology. 2010;131:340–9.PubMedCrossRefGoogle Scholar
  15. 15.
    Raveney BJE, Copland DA, Dick AD, Nicholson LB. TNFR1-dependent regulation of myeloid cell function in experimental autoimmune uveoretinitis. J Immunol. 2009;183:2321–9.PubMedCrossRefGoogle Scholar
  16. 16.
    May RM. Biological populations with nonoverlapping generations: stable points, stable cycles, and chaos. Science. 1974;186(4164):645–7.PubMedCrossRefGoogle Scholar
  17. 17.
    Perelson AS, Nelson PW. Mathematical analysis of HIV-1 dynamics in vivo. Siam Rev. 1999;41(1):3–44.CrossRefGoogle Scholar
  18. 18.
    Jung U, Norman KE, Scharffetter-Kochanek K, Beaudet AL, Ley K. Transit time of leukocytes rolling through venules controls cytokine-induced inflammatory cell recruitment in vivo. J Clin Invest. 1998;102(8):1526–33.PubMedCrossRefGoogle Scholar
  19. 19.
    Luna JD, Chan CC, Derevjanik NL, et al. Blood-retinal barrier (BRB) breakdown in experimental autoimmune uveoretinitis: comparison with vascular endothelial growth factor, tumor necrosis factor alpha, and interleukin-1 beta-mediated breakdown. J Neurosci Res. 1997;49(3):268–80.PubMedCrossRefGoogle Scholar
  20. 20.
    Prendergast RA, Iliff CE, Coskuncan NM, Caspi RR, Sartani G, Tarrant TK, Lutty GA, McLeod DS. T cell traffic and the inflammatory response in experimental autoimmune uveoretinitis. Invest Ophthalmol Vis Sci. 1998;39(5):754–62.PubMedGoogle Scholar
  21. 21.
    Caspi RR. A look at autoimmunity and inflammation in the eye. J Clin Invest. 2010;120(9):3073–83.PubMedCrossRefGoogle Scholar
  22. 22.
    Van Furth R, Diesselhoff-den Dulk MC, Mattie H. Quantitative study on the production and kinetics of mononuclear phagocytes during an acute inflammatory reaction. J Exp Med. 1973;138(6):1314–30.PubMedCrossRefGoogle Scholar
  23. 23.
    Pedra JHF, Cassel SL, Sutterwala FS. Sensing pathogens and danger signals by the inflammasome. Curr Opin Immunol. 2009;21(1):10–6.PubMedCrossRefGoogle Scholar
  24. 24.
    Liu K, Victora GD, Schwickert TA, et al. In vivo analysis of dendritic cell development and homeostasis. Science. 2009;324(5925):392–7.PubMedGoogle Scholar
  25. 25.
    Auffray C, Sieweke MH, Geissmann F. Blood monocytes: development, heterogeneity, and relationship with dendritic cells. Annu Rev Immunol. 2009;27(1):669–92.PubMedCrossRefGoogle Scholar
  26. 26.
    Kamei M, Carman CV. New observations on the trafficking and diapedesis of monocytes. Curr Opin Hematol. 2010;17(1):43–52.PubMedCrossRefGoogle Scholar
  27. 27.
    Moon JJ, Chu HH, Pepper M, McSorley SJ, Jameson SC, Kedl RM, Jenkins MK. Naive CD4+ T cell frequency varies for different epitopes and predicts repertoire diversity and response magnitude. Immunity. 2007;27(2):203–13.PubMedCrossRefGoogle Scholar
  28. 28.
    Pittet MJ, Mempel TR. Regulation of T-cell migration and effector functions: insights from in vivo imaging studies. Immunol Rev. 2008;221:107–29.PubMedCrossRefGoogle Scholar
  29. 29.
    Carreno LJ, Bueno SM, Bull P, Nathenson SG, Kalergis AM. The half-life of the T-cell receptor/peptide-major histocompatibility complex interaction can modulate T-cell activation in response to bacterial challenge. Immunology. 2007;121(2):227–37.PubMedCrossRefGoogle Scholar
  30. 30.
    Ludewig B, Krebs P, Junt T, Metters H, Ford NJ, Anderson RM, Bocharov G. Determining control parameters for dendritic cell-cytotoxic T lymphocyte interaction. Eur J Immunol. 2004;34(9):2407–18.PubMedCrossRefGoogle Scholar
  31. 31.
    Kerr EC, Copland DA, Dick AD, Nicholson LB. The dynamics of leukocyte infiltration in experimental autoimmune uveoretinitis. Prog Retin Eye Res. 2008;27:527–35.PubMedCrossRefGoogle Scholar
  32. 32.
    Perelson AS, Weisbuch G. Immunology for physicists. Rev Mod Phys. 1997;69(4):1219–67.CrossRefGoogle Scholar
  33. 33.
    Everds NE. Hematology of the laboratory mouse. In: Fox J, Barthold S, Davisson M, Newcomer C, Quimby F, Smith A, editors. The mouse in biomedical research Vol. III. London: Academic Press; 2006. pp 133–170.Google Scholar
  34. 34.
    Rugh R, Somogyi C. The effect of pregnancy on peripheral blood in the mouse. Biol Bull. 1969;136(3):454–60.PubMedCrossRefGoogle Scholar
  35. 35.
    De Boer RJ, Perelson AS. Towards a general function describing T cell proliferation. J Theor Biol. 1995;175(4):567–76.PubMedCrossRefGoogle Scholar
  36. 36.
    Baev DV, Peng X-H, Song L, Barnhart JR, Crooks GM, Weinberg KI, Metelitsa LS. Distinct homeostatic requirements of CD4+ and CD4- subsets of Valpha24-invariant natural killer T cells in humans. Blood. 2004;104(13):4150–6.PubMedCrossRefGoogle Scholar
  37. 37.
    Murray JM, Kaufmann GR, Hodgkin PD, Lewin SR, Kelleher AD, Davenport MP, Zaunders JJ. Naive T cells are maintained by thymic output in early ages but by proliferation without phenotypic change after age twenty. Immunol Cell Biol. 2003;81(6):487–95.PubMedCrossRefGoogle Scholar
  38. 38.
    Ruedl C, Koebel P, Bachmann M, Hess M, Karjalainen K. Anatomical origin of dendritic cells determines their life span in peripheral lymph nodes. J Immunol. 2000;165(9):4910–6.PubMedGoogle Scholar
  39. 39.
    Kamath AT, Pooley J, O’Keeffe MA, et al. The development, maturation, and turnover rate of mouse spleen dendritic cell populations. J Immunol. 2000;165(12):6762–70.PubMedGoogle Scholar
  40. 40.
    Geginat J, Sallusto F, Lanzavecchia A. Cytokine-driven proliferation and differentiation of human naive, central memory, and effector memory CD4(+) T cells. J Exp Med. 2001;194(12):1711–9.PubMedCrossRefGoogle Scholar
  41. 41.
    Manjunath N, Shankar P, Wan J, et al. Effector differentiation is not prerequisite for generation of memory cytotoxic T lymphocytes. J Clin Invest. 2001;108(6):871–8.PubMedGoogle Scholar
  42. 42.
    Reiner SL, Sallusto F, Lanzavecchia A. Division of labor with a workforce of one: challenges in specifying effector and memory T cell fate. Science. 2007;317(5838):622–5.PubMedCrossRefGoogle Scholar
  43. 43.
    Kallies A. Distinct regulation of effector and memory T-cell differentiation. Immunol Cell Biol. 2008;86(4):325–32.PubMedCrossRefGoogle Scholar
  44. 44.
    Ganusov VV. Discriminating between different pathways of memory CD8+ T cell differentiation. J Immunol. 2007;179(8):5006–13.PubMedGoogle Scholar
  45. 45.
    Zand MS, Briggs BJ, Bose A, Vo T. Discrete event modeling of CD4+ memory T cell generation. J Immunol. 2004;173(6):3763–72.PubMedGoogle Scholar
  46. 46.
    Kohler B. Mathematically modeling dynamics of T cell responses: predictions concerning the generation of memory cells. J Theor Biol. 2007;245(4):669–76.PubMedCrossRefGoogle Scholar
  47. 47.
    De Leenheer P, Smith HL. Virus dynamics: a global analysis. Siam J Appl Math. 2003;63:1313–27.CrossRefGoogle Scholar
  48. 48.
    Antia R, Bergstrom CT, Pilyugin SS, Kaech SM, Ahmed R. Models of CD8+ responses: 1. What is the antigen-independent proliferation program. J Theor Biol. 2003;221(4):585–98.PubMedCrossRefGoogle Scholar
  49. 49.
    Zhou GM, Strom RC, Giguere V, Williams RW. Modulation of retinal cell populations and eye size in retinoic acid receptor knockout mice. Mol Vision. 2001;7(36):253–60.Google Scholar
  50. 50.
    Jecker P, Pabst R, Westermann J. Proliferating macrophages, dendritic cells, natural killer cells, T and B lymphocytes in the middle ear and Eustachian tube mucosa during experimental acute otitis media in the rat. Clin Exp Immunol. 2001;126(3):421–5.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Basel AG 2012

Authors and Affiliations

  • David Nicholson
    • 1
  • Emma C. Kerr
    • 1
  • Owen G. Jepps
    • 2
  • Lindsay B. Nicholson
    • 1
    • 3
    • 4
  1. 1.School of Cellular and Molecular Medicine, Medical Sciences BuildingUniversity of BristolBristolUK
  2. 2.Queensland Micro- and Nanotechnology Centre, School of Biomolecular and Physical SciencesGriffith UniversityBrisbaneAustralia
  3. 3.Academic Unit of Ophthalmology, School of Clinical SciencesUniversity of Bristol, Bristol Eye HospitalBristolUK
  4. 4.BristolUK

Personalised recommendations