Inflammation Research

, Volume 60, Issue 12, pp 1139–1151

HMC-1 human mast cells synthesize neurotensin (NT) precursor, secrete bioactive NT-like peptide(s) and express NT receptor NTS1

  • David E. Cochrane
  • Robert E. Carraway
  • Kimberly Harrington
  • Melissa Laudano
  • Stephen Rawlings
  • Ross S. Feldberg
Original Research Paper

Abstract

Objective and design

To determine if mast cells synthesize the inflammatory peptide, neurotensin (NT), secrete immunoreactive and bioactive NT, and express the NT receptor NTS1.

Materials

HMC-1 cells, pleural mast cells from Sprague–Dawley rats, LAD2 mast cells, and human cord blood mast cells were used.

Treatment

HMC-1 cells were stimulated with NT, C48/80, mastoparan, or PGE2. For changes in cutaneous vascular permeability, anesthetized rats were injected intravenously with Evans Blue dye and intradermally with saline, NT, histamine, diphenhydramine, and C48/80.

Methods

RT-PCR was used to identify RNA transcripts. Histamine was measured by fluorometric assay. In vivo cutaneous vascular permeability assays, radio-immunoassays for NT, Western blotting for the NT precursor protein and NTS1 protein from HMC-1 cells and tissues from rats were used. Immunohistochemistry was used to identify NT precursor-like proteins in HMC-1 mast cells.

Results

HMC-1 cells express mRNAs for NT precursor, PC5A processing enzyme and NTS1 receptor. Human cord blood mast cells and LAD2 mast cells express mRNA transcripts for NT precursor and NTS1. Western blotting showed NT precursor and NTS1 receptor in HMC1. Rat tissues with high numbers of mast cells contained NT precursor proteins. NT-like peptides from HMC-1 displayed NT-like bioactivity.

Conclusions

HMC-1 mast cells synthesize and secrete immunoreactive and bioactive NT-like peptide(s) and express the NT receptor, suggesting that NT from mast cells might serve autocrine and paracrine roles.

Keywords

HMC-1 mast cell Neurotensin Neurotensin receptor Tumor growth 

References

  1. 1.
    Galli SJ, Nakae S, Tsai M. Mast cells in the development of adaptive immune responses. Nat Immunol. 2005;6:135–42.PubMedCrossRefGoogle Scholar
  2. 2.
    Miller LA, Cochrane DE, Carraway RE, Feldberg RS. Blockade of mast cell histamine secretion in response to neurotensin by SR 48692, a nonpeptide antagonist of the neurotensin brain receptor. Br J Pharmacol. 1995;114:1466–70.PubMedGoogle Scholar
  3. 3.
    Theoharides TC, Cochrane DE. Critical role of mast cells in inflammatory diseases and the effect of acute stress. J Neuroimmunol. 2004;146:1–12.PubMedCrossRefGoogle Scholar
  4. 4.
    Galli SJ, Tsai M. Mast cells: versatile regulators of inflammation, tissue remodeling, host defense and homeostasis. J Dermatol Sci. 2008;49:7–19.PubMedCrossRefGoogle Scholar
  5. 5.
    De Winter BY, De Man JG. Interplay between inflammation, immune system and neuronal pathways: effect on gastrointestinal motility. World J Gastroenterol. 2010;16:5523–35.PubMedCrossRefGoogle Scholar
  6. 6.
    Bischoff SC. Physiological and pathophysiological functions of intestinal mast cells. Semin Immunopathol. 2009;31:185–205.PubMedCrossRefGoogle Scholar
  7. 7.
    Gui X, Carraway RE. Involvement of mast cells in basal and neurotensin-induced intestinal absorption of taurocholate in rats. Am J Physiol Gastrointest Liver Physiol. 2004;287:G408–16.PubMedCrossRefGoogle Scholar
  8. 8.
    Galinsky DS, Nechushtan H. Mast cells and cancer–no longer just basic science. Crit Rev Oncol Hematol. 2008;68:115–30.PubMedCrossRefGoogle Scholar
  9. 9.
    Maltby S, Khazaie K, McNagny KM. Mast cells in tumor growth: angiogenesis, tissue remodelling and immune-modulation. Biochim Biophys Acta. 2009;1796:19–26.PubMedGoogle Scholar
  10. 10.
    Coussens LM, Werb Z. Inflammation and cancer. Nature. 2002;420:860–7.PubMedCrossRefGoogle Scholar
  11. 11.
    Nechushtan H. The complexity of the complicity of mast cells in cancer. Int J Biochem Cell Biol. 2010;42:551–4.PubMedCrossRefGoogle Scholar
  12. 12.
    Melillo RM, Guarino V, Avilla E, Galdiero MR, Liotti F, Prevete N, et al. Mast cells have a protumorigenic role in human thyroid cancer. Oncogene. 2010;29:6203–15.PubMedCrossRefGoogle Scholar
  13. 13.
    Balkwill F. Cancer and the chemokine network. Nat Rev Cancer. 2004;4:540–50.PubMedCrossRefGoogle Scholar
  14. 14.
    Mantovani A, Allavena P, Sica A, Balkwill F. Cancer-related inflammation. Nature. 2008;454:436–44.PubMedCrossRefGoogle Scholar
  15. 15.
    Carraway R, Leeman SE. Characterization of radioimmunoassayable neurotensin in the rat: Its differential distribution in the central nervous system, small intestine, and stomach. J Biol Chem. 1976;251:7045–52.PubMedGoogle Scholar
  16. 16.
    Reinecke M. Neurotensin: immunohistochemical localization in central and peripheral nervous system and in endocrine cells and its functional role as neurotransmitter and endocrine hormone. Prog Histochem Cytochem. 1985;16:1–172.PubMedGoogle Scholar
  17. 17.
    Carraway RE. Neurotensin. In: Becker KL, editor. Principles and practice of endocrinology and medicine. Philadelphia: J. P. Lippencott; 1995. p. 1424–30.Google Scholar
  18. 18.
    Zhao D, Pothoulakis C. Effects of NT on gastrointestinal motility and secretion, and role in intestinal inflammation. Peptides. 2006;27:2434–44.PubMedCrossRefGoogle Scholar
  19. 19.
    Evers BM. Neurotensin and growth of normal and neoplastic tissues. Peptides. 2006;27:2424–33.PubMedCrossRefGoogle Scholar
  20. 20.
    Carraway RE, Plona AM. Involvement of neurotensin in cancer growth: evidence, mechanisms and development of diagnostic tools. Peptides. 2006;27:2445–60.PubMedCrossRefGoogle Scholar
  21. 21.
    Rosell S. The role of neurotensin in the uptake and distribution of fat. Ann NY Acad Sci. 1982;400:183–97.PubMedCrossRefGoogle Scholar
  22. 22.
    Carraway R, Leeman SE. The isolation of a new hypotensive peptide, neurotensin, from bovine hypothalami. J Biol Chem. 1973;248:6854–61.PubMedGoogle Scholar
  23. 23.
    Carraway RE, Cochrane DE, Salmonsen R, Muraki K, Boucher W. Neurotensin elevates hematocrit and plasma levels of the leukotrienes, LTB4, LTC4, LTD4 and LTE4, in anesthetized rats. Peptides. 1991;12:1105–11.PubMedCrossRefGoogle Scholar
  24. 24.
    Carraway R, Cochrane DE, Lansman JB, Leeman SE, Paterson BM, Welch HJ. Neurotensin stimulates exocytotic histamine secretion from rat mast cells and elevates plasma histamine levels. J Physiol. 1982;323:403–14.PubMedGoogle Scholar
  25. 25.
    Cochrane DE, Boucher W, Bibb P. Neurotensin stimulates histamine release in in vivo skin ‘blisters’ in rats: an effect inhibited by cromolyn or somatostatin. Int Arch Allergy Appl Immunol. 1986;80:225–30.PubMedCrossRefGoogle Scholar
  26. 26.
    Barrocas AM, Cochrane DE, Carraway RE, Feldberg RS. Neurotensin stimulation of mast cell secretion is receptor-mediated, pertussis-toxin sensitive and requires activation of phospholipase C. Immunopharmacology. 1999;41:131–7.PubMedCrossRefGoogle Scholar
  27. 27.
    Feldberg RS, Cochrane DE, Carraway RE, Brown E, Sawyer R, Hartunian M, et al. Evidence for a neurotensin receptor in rat serosal mast cells. Inflamm Res. 1998;47:245–50.PubMedCrossRefGoogle Scholar
  28. 28.
    Bean AJ, Dagerlind A, Hokfelt T, Dobner PR. Cloning of human neurotensin/neuromedin N genomic sequences and expression in the ventral mesencephalon of schizophrenics and age/sex matched controls. Neuroscience. 1992;50:259–68.PubMedCrossRefGoogle Scholar
  29. 29.
    Dobner PR, Barber DL, Villa-Komaroff L, McKiernan C. Cloning and sequence analysis of cDNA for the canine neurotensin/neuromedin N precursor. Proc Natl Acad Sci U S A. 1987;84:3516–20.PubMedCrossRefGoogle Scholar
  30. 30.
    Kitabgi P. Differential processing of pro-neurotensin/neuromedin N and relationship to pro-hormone convertases. Peptides. 2006;27:2508–14.PubMedCrossRefGoogle Scholar
  31. 31.
    Villeneuve P, Lafortune L, Seidah NG, Kitabgi P, Beaudet A. Immunohistochemical evidence for the involvement of protein convertases 5A and 2 in the processing of pro-neurotensin in rat brain. J Comp Neurol. 2000;424:461–75.PubMedCrossRefGoogle Scholar
  32. 32.
    Cabot PJ, Carter L, Gaiddon C, Zhang Q, Schafer M, Loeffler JP, et al. Immune cell-derived beta-endorphin: production, release, and control of inflammatory pain in rats. J Clin Invest. 1997;100:142–8.PubMedCrossRefGoogle Scholar
  33. 33.
    Hara M, Ono K, Wada H, Sasayama S, Matsumori A. Preformed angiotensin II is present in human mast cells. Cardiovasc Drugs Ther. 2004;18:415–20.PubMedCrossRefGoogle Scholar
  34. 34.
    Kempuraj D, Papadopoulou NG, Lytinas M, Huang M, Kandere-Grzybowska K, Madhappan B, et al. Corticotropin-releasing hormone and its structurally related urocortin are synthesized and secreted by human mast cells. Endocrinology. 2004;145:43–8.PubMedCrossRefGoogle Scholar
  35. 35.
    Pascual DW, Bost KL. Substance P production by P388D1 macrophages: a possible autocrine function for this neuropeptide. Immunology. 1990;71:52–6.PubMedGoogle Scholar
  36. 36.
    Butterfield JH, Weiler D, Dewald G, Gleich GJ. Establishment of an immature mast cell line from a patient with mast cell leukemia. Leuk Res. 1988;12:345–55.PubMedCrossRefGoogle Scholar
  37. 37.
    Scarpa RC, Carraway RE, Cochrane DE. Insulin-like growth factor (IGF) induced proliferation of human lung fibroblasts is enhanced by neurotensin. Peptides. 2005;26:2201–10.PubMedCrossRefGoogle Scholar
  38. 38.
    Carraway RE, Mitra SP, Evers BM, Townsend CM Jr. BON cells display the intestinal pattern of neurotensin/neuromedin N precursor processing. Regul Pept. 1994;53:17–29.PubMedCrossRefGoogle Scholar
  39. 39.
    Carraway RE, Mitra SP, Joyce TJ. Tissue-specific processing of neurotensin/neuromedin-N precursor in cat. Regul Pept. 1993;43:97–106.PubMedCrossRefGoogle Scholar
  40. 40.
    Carraway RE, Mitra SP, Paradise C. Characterization of large neuromedin-N using antisera towards regions of the neurotensin/neuromedin-N precursor. Peptides. 1991;12:601–7.PubMedCrossRefGoogle Scholar
  41. 41.
    Carraway RE, Mitra SP, Salmonsen R. Isolation and quantitation of several new peptides from the canine neurotensin/neuromedin N precursor. Peptides. 1992;13:1039–47.PubMedCrossRefGoogle Scholar
  42. 42.
    Bibb PC, Cochrane DE, Morel-Laurens N. Loss of quin 2 accompanies degranulation of mast cells. FEBS Lett. 1986;209:169–74.PubMedCrossRefGoogle Scholar
  43. 43.
    Hassan S, Dobner PR, Carraway RE. Involvement of MAP-kinase, PI3-kinase and EGF-receptor in the stimulatory effect of Neurotensin on DNA synthesis in PC3 cells. Regul Pept. 2004;120:155–66.PubMedCrossRefGoogle Scholar
  44. 44.
    Barbero P, Rovere C, De Bie I, Seidah N, Beaudet A, Kitabgi P. PC5-A-mediated processing of pro-neurotensin in early compartments of the regulated secretory pathway of PC5-transfected PC12 cells. J Biol Chem. 1998;273:25339–46.PubMedCrossRefGoogle Scholar
  45. 45.
    Cochrane DE, Douglas WW. Calcium-induced extrusion of secretory granules (exocytosis) in mast cells exposed to 48–80 or the ionophores A-23187 and X-537A. Proc Natl Acad Sci U S A. 1974;71:408–12.PubMedCrossRefGoogle Scholar
  46. 46.
    Kuchtey J, Fewtrell C. Protein kinase C activator PMA reduces the Ca(2 +) response to antigen stimulation of adherent RBL-2H3 mucosal mast cells by inhibiting depletion of intracellular Ca(2 +) stores. J Cell Physiol. 1999;181:113–23.PubMedCrossRefGoogle Scholar
  47. 47.
    Feng C, Beller EM, Bagga S, Boyce JA. Human mast cells express multiple EP receptors for prostaglandin E2 that differentially modulate activation responses. Blood. 2006;107:3243–50.PubMedCrossRefGoogle Scholar
  48. 48.
    Abdel-Majid RM, Marshall JS. Prostaglandin E2 induces degranulation-independent production of vascular endothelial growth factor by human mast cells. J Immunol. 2004;172:1227–36.PubMedGoogle Scholar
  49. 49.
    Nakayama T, Mutsuga N, Yao L, Tosato G. Prostaglandin E2 promotes degranulation-independent release of MCP-1 from mast cells. J Leukoc Biol. 2006;79:95–104.PubMedCrossRefGoogle Scholar
  50. 50.
    Gurish MF, Austen KF. The diverse roles of mast cells. J Exp Med. 2001;194:F1–5.PubMedCrossRefGoogle Scholar
  51. 51.
    Vita N, Laurent P, Lefort S, Chalon P, Dumont X, Kaghad M, et al. Cloning and expression of a complementary DNA encoding a high affinity human neurotensin receptor. FEBS Lett. 1993;317:139–42.PubMedCrossRefGoogle Scholar
  52. 52.
    Kitabgi P, Checler F, Mazella J, Vincent JP. Pharmacology and biochemistry of neurotensin receptors. Rev Clin Basic Pharm. 1985;5:397–486.PubMedGoogle Scholar
  53. 53.
    Moody TW, Carney DN, Korman LY, Gazdar AF, Minna JD. Neurotensin is produced by and secreted from classic small cell lung cancer cells. Life Sci. 1985;36:1727–32.PubMedCrossRefGoogle Scholar
  54. 54.
    Nilsson G, Blom T, Kusche-Gullberg M, Kjellen L, Butterfield JH, Sundstrom C, et al. Phenotypic characterization of the human mast-cell line HMC-1. Scand J Immunol. 1994;39:489–98.PubMedCrossRefGoogle Scholar
  55. 55.
    Gully D, Canton M, Boigegrain R, Jeanjean F, Molimard JC, Poncelet M, et al. Biochemical and pharmacological profile of a potent and selective nonpeptide antagonist of the neurotensin receptor. Proc Natl Acad Sci USA. 1993;90:65–9.PubMedCrossRefGoogle Scholar
  56. 56.
    Rosengard BR, Mahalik C, Cochrane DE. Mast cell secretion: differences between immunologic and non-immunologic stimulation. Agents Actions. 1986;19:133–40.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Basel AG 2011

Authors and Affiliations

  • David E. Cochrane
    • 1
  • Robert E. Carraway
    • 2
  • Kimberly Harrington
    • 1
  • Melissa Laudano
    • 1
  • Stephen Rawlings
    • 1
  • Ross S. Feldberg
    • 1
  1. 1.Department of BiologyTufts UniversityMedfordUSA
  2. 2.Department of Microbiology and Physiological SystemsUniversity of Massachusetts Medical SchoolWorcesterUSA

Personalised recommendations