Inflammation Research

, Volume 60, Issue 3, pp 299–307 | Cite as

MnTMPyP, a superoxide dismutase/catalase mimetic, decreases inflammatory indices in ischemic acute kidney injury

  • Jordan Mortensen
  • Brian Shames
  • Christopher P. Johnson
  • Vani Nilakantan
Original Research Paper



This study investigates the effect of a superoxide dismutase mimetic, MnTMPyP, on pro- and anti-inflammatory cytokines in acute renal ischemia–reperfusion (IR).

Materials and treatment

Male Sprague–Dawley rats underwent bilateral clamping of the renal arteries for 45 min followed by 1, 4, or 24 h of reperfusion. A subset of animals was treated with MnTMPyP (5 mg/kg, i.p.) or saline. Porcine proximal tubular epithelial cells were ATP-depleted for 4 h followed by recovery for 2 h.


Cytokines were analyzed by ELISA, and ED1+ macrophages and CD8+ T lymphocytes by immunohistochemistry. Statistical analysis was performed using ANOVA.


MnTMPyP attenuated the IR-mediated increase in serum creatinine and circulating levels of interleukin (IL)-2 following 24 h of reperfusion. Furthermore, treatment attenuated increases in tissue levels of tumor necrosis factor (TNF)-α, IL-2, IL-4, and IL-13. MnTMPyP partially prevented the IR-induced infiltration of ED1+ macrophages and CD8+ T lymphocytes in the kidney. ATP depletion–recovery of porcine proximal tubular epithelial cells resulted in decreased IL-6 and IL-10 levels, and MnTMPyP partially restored these cytokines.


These results show that MnTMPyP is partially effective in reducing inflammation associated with renal IR and that reactive oxygen species play a role in modulating both pro- and anti-inflammatory pathways in acute kidney injury.


Ischemia–reperfusion Kidney Reactive oxygen Inflammatory cytokines TNF MnTMPyP 



The authors would like to thank Dr. Huanling Liang for technical assistance with this project. This study was partially supported by an AHA grant to Dr. Vani Nilakantan.


  1. 1.
    Chatterjee PK, Todorovic Z, Sivarajah A, Mota-Filipe H, Brown PA, Stewart KN, et al. Differential effects of caspase inhibitors on the renal dysfunction and injury caused by ischemia–reperfusion of the rat kidney. Eur J Pharmacol. 2004;503:173–83.CrossRefPubMedGoogle Scholar
  2. 2.
    Dagher PC. Apoptosis in ischemic renal injury: roles of GTP depletion and p53. Kidney Int. 2004;66:506–9.CrossRefPubMedGoogle Scholar
  3. 3.
    Djamali A, Vidyasagar A, Adulla M, Hullett D, Reese S. Nox-2 is a modulator of fibrogenesis in kidney allografts. Am J Transplant. 2009;9:74–82.CrossRefPubMedGoogle Scholar
  4. 4.
    Lameire N. The pathophysiology of acute renal failure. Crit Care Clin. 2005;21:197–210.CrossRefPubMedGoogle Scholar
  5. 5.
    Lieberthal W, Koh JS, Levine JS. Necrosis and apoptosis in acute renal failure. Semin Nephrol. 1998;18:505–18.PubMedGoogle Scholar
  6. 6.
    Lieberthal W, Levine JS. Mechanisms of apoptosis and its potential role in renal tubular epithelial cell injury. Am J Physiol. 1996;271:F477–88.PubMedGoogle Scholar
  7. 7.
    Avunduk MC, Yurdakul T, Erdemli E, Yavuz A. Prevention of renal damage by alpha tocopherol in ischemia and reperfusion models of rats. Urol Res. 2003;31:280–5.CrossRefPubMedGoogle Scholar
  8. 8.
    Baliga R, Ueda N, Walker PD, Shah SV. Oxidant mechanisms in toxic acute renal failure. Drug Metab Rev. 1999;31:971–97.CrossRefPubMedGoogle Scholar
  9. 9.
    Barnard ML, Snyder SJ, Engerson TD, Turrens JF. Antioxidant enzyme status of ischemic and postischemic liver and ischemic kidney in rats. Free Radic Biol Med. 1993;15:227–32.CrossRefPubMedGoogle Scholar
  10. 10.
    Chatterjee PK, Cuzzocrea S, Brown PA, Zacharowski K, Stewart KN, Mota-Filipe H, et al. Tempol, a membrane-permeable radical scavenger, reduces oxidant stress-mediated renal dysfunction and injury in the rat. Kidney Int. 2000;58:658–73.CrossRefPubMedGoogle Scholar
  11. 11.
    Chatterjee PK, Patel NS, Kvale EO, Brown PA, Stewart KN, Mota-Filipe H, et al. EUK-134 reduces renal dysfunction and injury caused by oxidative and nitrosative stress of the kidney. Am J Nephrol. 2004;24:165–77.CrossRefPubMedGoogle Scholar
  12. 12.
    Nilakantan V, Liang H, Maenpaa CJ, Johnson CP. Differential patterns of peroxynitrite mediated apoptosis in proximal tubular epithelial cells following ATP depletion recovery. Apoptosis. 2008;13:621–33.CrossRefPubMedGoogle Scholar
  13. 13.
    Thurman JM, Ljubanovic D, Edelstein CL, Gilkeson GS, Holers VM. Lack of a functional alternative complement pathway ameliorates ischemic acute renal failure in mice. J Immunol. 2003;170:1517–23.PubMedGoogle Scholar
  14. 14.
    Donnahoo KK, Meldrum DR, Shenkar R, Chung CS, Abraham E, Harken AH. Early renal ischemia, with or without reperfusion, activates NFkappaB and increases TNF-alpha bioactivity in the kidney. J Urol. 2000;163:1328–32.CrossRefPubMedGoogle Scholar
  15. 15.
    Donnahoo KK, Meng X, Ayala A, Cain MP, Harken AH, Meldrum DR. Early kidney TNF-alpha expression mediates neutrophil infiltration and injury after renal ischemia–reperfusion. Am J Physiol. 1999;277:R922–9.PubMedGoogle Scholar
  16. 16.
    Donnahoo KK, Shames BD, Harken AH, Meldrum DR. Review article: the role of tumor necrosis factor in renal ischemia–reperfusion injury. J Urol. 1999;162:196–203.CrossRefPubMedGoogle Scholar
  17. 17.
    Choi DE, Jeong JY, Lim BJ, Na KR, Shin YT, Lee KW. Pretreatment with the tumor nerosis factor-alpha blocker etanercept attenuated ischemia–reperfusion renal injury. Transplant Proc. 2009;41:3590–6.CrossRefPubMedGoogle Scholar
  18. 18.
    Jo SK, Sung SA, Cho WY, Go KJ, Kim HK. Macrophages contribute to the initiation of ischaemic acute renal failure in rats. Nephrol Dial Transplant. 2006;21:1231–9.CrossRefPubMedGoogle Scholar
  19. 19.
    Sung SA, Jo SK, Cho WY, Won NH, Kim HK. Reduction of renal fibrosis as a result of liposome encapsulated clodronate induced macrophage depletion after unilateral ureteral obstruction in rats. Nephron Exp Nephrol. 2007;105:e1–9.CrossRefPubMedGoogle Scholar
  20. 20.
    Liang HL, Hilton G, Mortensen J, Regner K, Johnson CP, Nilakantan V. MnTMPyP, a cell-permeant SOD mimetic, reduces oxidative stress and apoptosis following renal ischemia–reperfusion. Am J Physiol Renal Physiol. 2009;296:F266–76.CrossRefPubMedGoogle Scholar
  21. 21.
    Maenpaa CJ, Shames BD, Van Why SK, Johnson CP, Nilakantan V. Oxidant-mediated apoptosis in proximal tubular epithelial cells following ATP depletion and recovery. Free Radic Biol Med. 2008;44:518–26.CrossRefPubMedGoogle Scholar
  22. 22.
    Wang T, Liu B, Qin L, Wilson B, Hong JS. Protective effect of the SOD/catalase mimetic MnTMPyP on inflammation-mediated dopaminergic neurodegeneration in mesencephalic neuronal-glial cultures. J Neuroimmunol. 2004;147:68–72.CrossRefPubMedGoogle Scholar
  23. 23.
    Nilakantan V, Zhou X, Hilton G, Shi Y, Baker JE, Khanna AK, et al. Antagonizing reactive oxygen by treatment with a manganese (III) metalloporphyrin-based superoxide dismutase mimetic in cardiac transplants. J Thorac Cardiovasc Surg. 2006;131:898–906.CrossRefPubMedGoogle Scholar
  24. 24.
    Liang HL, Arsenault J, Mortensen J, Park F, Johnson CP, Nilakantan V. Partial attenuation of cytotoxicity and apoptosis by SOD1 in ischemic renal epithelial cells. Apoptosis. 2009;14:1176–89.CrossRefPubMedGoogle Scholar
  25. 25.
    Jo SK, Cha DR, Cho WY, Kim HK, Chang KH, Yun SY, et al. Inflammatory cytokines and lipopolysaccharide induce Fas-mediated apoptosis in renal tubular cells. Nephron. 2002;91:406–15.CrossRefPubMedGoogle Scholar
  26. 26.
    Kaminska D, Tyran B, Mazanowska O, Rabczynski J, Szyber P, Patrzalek D, et al. Cytokine gene expression in kidney allograft biopsies after donor brain death and ischemia–reperfusion injury using in situ reverse-transcription polymerase chain reaction analysis. Transplantation. 2007;84:1118–24.CrossRefPubMedGoogle Scholar
  27. 27.
    Nair MP, Nampoory MR, Johny KV, Costandi JN, Abdulhalim M, El-Reshaid W, et al. Induction immunosuppression with interleukin-2 receptor antibodies (basiliximab and daclizumab) in renal transplant recipients. Transplant Proc. 2001;33:2767–9.CrossRefPubMedGoogle Scholar
  28. 28.
    Wu H, Zhu B, Shimoishi Y, Murata Y, Nakamura Y. (-)-Epigallocatechin-3-gallate induces up-regulation of Th1 and Th2 cytokine genes in Jurkat T cells. Arch Biochem Biophys. 2009;483:99–105.CrossRefPubMedGoogle Scholar
  29. 29.
    Shen XD, Ke B, Zhai Y, Gao F, Tsuchihashi S, Lassman CR, et al. Absence of toll-like receptor 4 (TLR4) signaling in the donor organ reduces ischemia and reperfusion injury in a murine liver transplantation model. Liver Transpl. 2007;13:1435–43.CrossRefPubMedGoogle Scholar
  30. 30.
    Vannier E, Miller LC, Dinarello CA. Coordinated antiinflammatory effects of interleukin 4: interleukin 4 suppresses interleukin 1 production but up-regulates gene expression and synthesis of interleukin 1 receptor antagonist. Proc Natl Acad Sci USA. 1992;89:4076–80.CrossRefPubMedGoogle Scholar
  31. 31.
    Sharma P, Chakraborty R, Wang L, Min B, Tremblay ML, Kawahara T, et al. Redox regulation of interleukin-4 signaling. Immunity. 2008;29:551–64.CrossRefPubMedGoogle Scholar
  32. 32.
    Koken T, Serteser M, Kahraman A, Akbulut G, Dilek ON. Which is more effective in the prevention of renal ischemia–reperfusion-induced oxidative injury in the early period in mice: interleukin (IL)-10 or anti-IL-12? Clin Biochem. 2004;37:50–5.CrossRefPubMedGoogle Scholar
  33. 33.
    Deng J, Kohda Y, Chiao H, Wang Y, Hu X, Hewitt SM, et al. Interleukin-10 inhibits ischemic and cisplatin-induced acute renal injury. Kidney Int. 2001;60:2118–28.CrossRefPubMedGoogle Scholar
  34. 34.
    Nandi D, Mishra MK, Basu A, Bishayi B. Protective effects of interleukin-6 in lipopolysaccharide (LPS)-induced experimental endotoxemia are linked to alteration in hepatic anti-oxidant enzymes and endogenous cytokines. Immunobiology. 2009;215:443–51.CrossRefPubMedGoogle Scholar
  35. 35.
    Yu SJ, Oh DJ, Yu SH. The investigation of macrophage infiltration in the early phase of ischemic acute renal failure in mice. Korean J Intern Med. 2008;23:64–71.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Basel AG 2010

Authors and Affiliations

  • Jordan Mortensen
    • 1
  • Brian Shames
    • 1
    • 2
  • Christopher P. Johnson
    • 1
    • 2
  • Vani Nilakantan
    • 1
    • 2
  1. 1.Division of Transplant SurgeryMedical College of WisconsinMilwaukeeUSA
  2. 2.Division of Clinical ResearchAurora Health CareMilwaukeeUSA

Personalised recommendations