Inflammation Research

, Volume 60, Issue 2, pp 153–161

Toll-like receptor 4 can recognize SapC-DOPS to stimulate macrophages to express several cytokines

  • Kaihua Lu
  • Guangfeng Zhao
  • Hongna Lu
  • Shuli Zhao
  • Yuxian Song
  • Xiaoyang Qi
  • Yayi Hou
Original Research Paper

Abstract

Objective and design

SapC-DOPS is a newly combined compound consisting of saposin C and dioleoylphosphatidylserine (DOPS). Our recent study showed that SapC-DOPS exhibits anti-tumor activity. However, SapC-DOPS has recognition elements of Toll-like receptor (TLR) 2 and TLR4;therefore, we want to know whether SapC-DOPS can induce abnormal immunoreaction via identification TLRs.

Methods

We investigated the capacity of SapC-DOPS to induce cytokines in vivo and in vitro and analyzed the involvement of TLR and NF-kB in these cytokines production.

Results

SapC-DOPS could activate the cytokine production by peripheral macrophages, enhance the expressions of TLR4 and stimulate the NF-κB nuclear translocation. PDTC, an NF-κB inhibitor, could decrease the SapC-DOPS inducible TNF-α and IL-1β production.

Conclusions

SapC-DOPS was similar to LPS in the immune response and may induce the production of cytokines in macrophages via the TLR4 signaling pathway and, at least in part, the alteration of the NF-κB pathway.

Keywords

SapC-DOPS Raw264.7 TLRs NF-κB 

References

  1. 1.
    Nakano T, Sandhoff K, Stümper J, Christomanou H, Suzuki K. Structure of full-length cDNA coding for sulfatide activator, a co-beta-glucosidase and two other homologous proteins: two alternate forms of the sulfatide activator. J Biochem. 1989;105:152–4.PubMedGoogle Scholar
  2. 2.
    Rorman EG, Grabowski GA. Molecular cloning of a human co-betaglucosidase cDNA: evidence that four sphingolipid hydrolase activator proteins are encoded by single genes in humans and rats. Genomics. 1989;5:486–92.CrossRefPubMedGoogle Scholar
  3. 3.
    Fujibayashi S, Wenger DA. Synthesis and processing of sphingolipid activator protein-2 (SAP-2) in cultured human fibroblasts. J Biol Chem. 1986;261:15339–43.PubMedGoogle Scholar
  4. 4.
    Fujibayashi S, Wenger DA. Biosynthesis of the sulfatide/GM1 activator protein (SAP-1) in control and mutant cultured skin fibroblasts. Biochim Biophys Acta. 1986;875:554–62.PubMedGoogle Scholar
  5. 5.
    Leonova T, Qi X, Bencosme A, Ponce E, Sun Y, Grabowski GA. Proteolytic processing patterns of prosaposin in insect and mammalian cells. J Biol Chem. 1996;271:17312–20.CrossRefPubMedGoogle Scholar
  6. 6.
    Qi X, Grabowski GA. Differential membrane interactions of saposin A and C: implications for the functional specificity. J Biol Chem. 2001;276:27010–7.CrossRefPubMedGoogle Scholar
  7. 7.
    You HX, Yu L, Qi X. Phospholipid membrane restructuring induced by saposin C: a topographic study using atomic force microscopy. FEBS Lett. 2001;503:97–102.CrossRefPubMedGoogle Scholar
  8. 8.
    You HX, Qi X, Grabowski GA, Yu L. Phospholipid membrane interactions of saposin C: in situ atomic force microscopic study. Biophys J. 2003;84:2043–57.CrossRefPubMedGoogle Scholar
  9. 9.
    Vaccaro AM, Tatti M, Ciaffoni F, Salvioli R, Serafino A, Barca A. Saposin C induces pH-dependent destabilization and fusion of phosphatidylserine-containing vesicles. FEBS Lett. 1994;349:181–6.CrossRefPubMedGoogle Scholar
  10. 10.
    Wang Y, Grabowski GA, Qi X. Phospholipid vesicle fusion induced by saposin C. Arch Biochem Biophys. 2003;415:43–53.CrossRefPubMedGoogle Scholar
  11. 11.
    Qi X, Chu Z. Fusogenic domain and lysines in saposin C. Arch Biochem Biophys. 2004;424:210–8.CrossRefPubMedGoogle Scholar
  12. 12.
    Chu Z, Sun Y, Kuan CY, Grabowski GA, Qi X. Saposin C: neuronal Effect and CNS Delivery by Liposomes. Ann N Y Acad Sci. 2005;1053:237–46.CrossRefPubMedGoogle Scholar
  13. 13.
    Qi X, Chu Z, Mahller YY, Stringer KF, Witte DP, Cripe TP. Cancer-selective targeting and cytotoxicity by liposomal-coupled lysosomal saposin C protein. Clin Cancer Res. 2009;15(18):5840–51.CrossRefPubMedGoogle Scholar
  14. 14.
    Medzhitov R, Preston-Hurlburt P, Janeway CA Jr. A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature. 1997;388:394–7.CrossRefPubMedGoogle Scholar
  15. 15.
    Kawai T, Akira S. TLR signaling. Cell Death Differ. 2006;13:816–25.CrossRefPubMedGoogle Scholar
  16. 16.
    Chen T, Zhao XY, Liu Y, Shi Q, Hua ZC, Shen PP. Analysis of immunomodulating nitric oxide, iNOS and cytokines mRNA in mouse macrophages induced by microcystin-LR. Toxicology. 2004;197:67–77.CrossRefPubMedGoogle Scholar
  17. 17.
    Schreiber E, Harshman K, Kemler I, Malipiero U, Schaffner W, Fontana A, et al. Astrocytes and glioblastoma cells express novel octamer-DNA binding proteins distinct from the ubiquitous Oct-1 and B cell type Oct-2 proteins. Nucleic Acids Res. 1990;18:5495–503.CrossRefPubMedGoogle Scholar
  18. 18.
    Lemay S, Lebedeva TV, Singh AK. Inhibition of cytokine gene expression by sodium salicylate in a macrophage cell line through an NFkappaB-independent mechanism. Clin Diagn Lab Immunol. 1999;6:567–72.PubMedGoogle Scholar
  19. 19.
    Stark GR, Kerr IM, Williams BR, Silverman RH, Schreiber RD. How cells respond to interferons. Annu Rev Biochem. 1998;67:227–64.CrossRefPubMedGoogle Scholar
  20. 20.
    Barros VED, Ferreira BR, Livonesi M, Figueiredo LTM. Cytokine and nitric oxide production by mouse macrophages infected with brazilian flaviviruses. Rev Inst Med Trop Sao Paulo. 2009;51(3):141–7.PubMedGoogle Scholar
  21. 21.
    Lu YC, Yeh WC, Ohashi PS. LPS/TLR4 signal transduction pathway. Cytokine. 2008;42:145–51.CrossRefPubMedGoogle Scholar
  22. 22.
    Cuschieri J, Billigren J, Maier RV. Endotoxin tolerance attenuates LPS-induced TLR4 mobilization to lipid rafts: a condition reversed by PKC activation. J Leukoc Biol. 2006;80:1289–97.CrossRefPubMedGoogle Scholar
  23. 23.
    Bochkov VN, Kadl A, Huber J, Gruber F, Binder BR, Leitinger N. Protective role of phospholipids oxidation products in endotoxin-induced tissue damage. Nature. 2002;419:77–81.CrossRefPubMedGoogle Scholar
  24. 24.
    Schmitz ML, Bacher S, Kracht M. IκB-independent control of NF-κB activity by modulatory phosphorylations. Trends Biochem Sci. 2001;26:186–90.CrossRefPubMedGoogle Scholar
  25. 25.
    Young HA, Bream JH. IFN-γ: recent advances in understanding regulation of expression, biological functions, and clinical applications. Curr Top Microbiol Immunol. 2007;316:97–117.CrossRefPubMedGoogle Scholar
  26. 26.
    Sawada H, Mitani Y, Maruyama J, Jiang BH, Ikeyama Y, Dida FA, et al. a nuclear factor-kappaB inhibitor pyrrolidine dithiocarbamate ameliorates pulmonary hypertension in rats. Orig Res. 2007;132:1265–74.Google Scholar
  27. 27.
    Kawai T, Takeuchi O, Fujita T, Inoue J, Mühlradt PF, Sato S, et al. Lipopolysaccharide stimulates the MyD88-independent pathway and results in activation of IFN-regulatory factor 3 and the expression of a subset of lipopolysaccharide-inducible genes. J Immunol. 2001;167:5887–94.PubMedGoogle Scholar

Copyright information

© Springer Basel AG 2010

Authors and Affiliations

  • Kaihua Lu
    • 1
  • Guangfeng Zhao
    • 1
  • Hongna Lu
    • 1
  • Shuli Zhao
    • 1
  • Yuxian Song
    • 1
  • Xiaoyang Qi
    • 2
  • Yayi Hou
    • 1
    • 3
  1. 1.Immunology and Reproductive Biology Lab of Medical School and State Key Laboratory of Pharmaceutical BiotechnologyNanjing UniversityNanjingPeople’s Republic of China
  2. 2.Jiangsu Changzhou Changji Biotechnology Development Co., LtdChangzhouPeople’s Republic of China
  3. 3.Jiangsu Key Laboratory of Molecular MedicineNanjing UniversityNanjingPeople’s Republic of China

Personalised recommendations