Inflammation Research

, Volume 59, Issue 12, pp 997–1003 | Cite as

Helicobacter pylori: a ROS-inducing bacterial species in the stomach

Review

Abstract

Background

Reactive oxygen species (ROS) and reactive nitrogen species (RNS) have been reported to impact gastric inflammation and carcinogenesis. However, the precise mechanism by which Helicobacter pylori induces gastric carcinogenesis is presently unclear.

Aim

This review focuses on H. pylori-induced ROS/RNS production in the host stomach, and its relationship with gastric carcinogenesis.

Results

Activated neutrophils are the main source of ROS/RNS production in the H. pylori-infected stomach, but H. pylori itself also produces ROS. In addition, extensive recent studies have revealed that H. pylori-induced ROS production in gastric epithelial cells might affect gastric epithelial cell signal transduction, resulting in gastric carcinogenesis. Excessive ROS/RNS production in the stomach can damage DNA in gastric epithelial cells, implying its involvement in gastric carcinogenesis.

Conclusion

Understanding the molecular mechanism behind H. pylori-induced ROS, and its involvement in gastric carcinogenesis, is important for developing new strategies for gastric cancer chemoprevention.

Keywords

Oxidative stress Leucocytes Infection NO 

Notes

Acknowledgments

This work was supported by a Grant-in-Aid for Scientific Research (B) to T.Y. (no. 21390184) and (C) to Y.N. (no.22590705) from Japan Society for the Promotion of Science, by a City Area Program to T.Y. and Y.N. from Ministry of Education, Culture, Sports, Science and Technology, Japan, and by an Adaptable and Seamless Technology Transfer Program through target-driven R&D to Y.N. from Japan Science and Technology Agency.

References

  1. 1.
    Marshall BJ, Warren JR. Unidentified curved bacilli in the stomach of patients with gastritis and peptic ulceration. Lancet. 1984;1:1311–5.CrossRefPubMedGoogle Scholar
  2. 2.
    Correa P, Cuello C, Duque E, Burbano LC, Garcia FT, Bolanos O, et al. Gastric cancer in Colombia. III. Natural history of precursor lesions. J Natl Cancer Inst. 1976;57:1027–35.PubMedGoogle Scholar
  3. 3.
    Lu W, Pan K, Zhang L, Lin D, Miao X, You W. Genetic polymorphisms of interleukin (IL)-1B, IL-1RN, IL-8, IL-10 and tumor necrosis factor alpha and risk of gastric cancer in a Chinese population. Carcinogenesis. 2005;26:631–6.CrossRefPubMedGoogle Scholar
  4. 4.
    Takahashi S, Fujita T, Yamamoto A. Role of cyclooxygenase-2 in Helicobacter pylori-induced gastritis in Mongolian gerbils. Am J Physiol Gastrointest Liver Physiol. 2000;279:791G–8G.PubMedGoogle Scholar
  5. 5.
    Yeo M, Park HK, Kim DK, Cho SW, Kim YS, Cho SY, et al. Restoration of heat shock protein70 suppresses gastric mucosal inducible nitric oxide synthase expression induced by Helicobacter pylori. Proteomics. 2004;4:3335–42.CrossRefPubMedGoogle Scholar
  6. 6.
    Handa O, Naito Y, Yoshikawa T. CagA protein of Helicobacter pylori: a hijacker of gastric epithelial cell signaling. Biochem Pharmacol. 2007;73:1697–702.CrossRefPubMedGoogle Scholar
  7. 7.
    Shirasaka D. Helicobacter pylori VacA and gastric ulcer. Int J Hematol. 2006;84:316–8.CrossRefPubMedGoogle Scholar
  8. 8.
    Viala J, Chaput C, Boneca IG, Cardona A, Girardin SE, Moran AP, et al. Nod1 responds to peptidoglycan delivered by the Helicobacter pylori cag pathogenicity island. Nat Immunol. 2004;5:1166–74.CrossRefPubMedGoogle Scholar
  9. 9.
    Suzuki H, Miura S, Imaeda H, Suzuki M, Han JY, Mori M, et al. Enhanced levels of chemiluminescence and platelet activating factor in urease-positive gastric ulcers. Free Radic Biol Med. 1996;20:449–54.CrossRefPubMedGoogle Scholar
  10. 10.
    Davies GR, Simmonds NJ, Stevens TR, Sheaff MT, Banatvala N, Laurenson IF, et al. Helicobacter pylori stimulates antral mucosal reactive oxygen metabolite production in vivo. Gut. 1994;35:179–85.CrossRefPubMedGoogle Scholar
  11. 11.
    Naito Y, Yoshikawa T. Molecular and cellular mechanisms involved in Helicobacter pylori-induced inflammation and oxidative stress. Free Radic Biol Med. 2002;33:323–36.CrossRefPubMedGoogle Scholar
  12. 12.
    Lambeth JD. NOX enzymes and the biology of reactive oxygen. Nat Rev Immunol. 2004;4:181–9.CrossRefPubMedGoogle Scholar
  13. 13.
    Nagata K, Yu H, Nishikawa M, Kashiba M, Nakamura A, Sato EF, et al. Helicobacter pylori generates superoxide radicals and modulates nitric oxide metabolism. J Biol Chem. 1998;273:14071–3.CrossRefPubMedGoogle Scholar
  14. 14.
    Benaissa M, Babin P, Quellard N, Pezennec L, Cenatiempo Y, Fauchere JL. Changes in Helicobacter pylori ultrastructure and antigens during conversion from the bacillary to the coccoid form. Infect Immun. 1996;64:2331–5.PubMedGoogle Scholar
  15. 15.
    Cellini L, Allocati N, Angelucci D, Iezzi T, Di Campli E, Marzio L, et al. Coccoid Helicobacter pylori not culturable in vitro reverts in mice. Microbiol Immunol. 1994;38:843–50.PubMedGoogle Scholar
  16. 16.
    Nakamura A, Park A, Nagata K, Sato EF, Kashiba M, Tamura T, et al. Oxidative cellular damage associated with transformation of Helicobacter pylori from a bacillary to a coccoid form. Free Radic Biol Med. 2000;28:1611–8.CrossRefPubMedGoogle Scholar
  17. 17.
    Naito Y, Yoshikawa T, Fujii T, Boku Y, Yagi N, Dao S, et al. Monochloramine-induced cell growth inhibition and apoptosis in a rat gastric mucosal cell line. J Clin Gastroenterol. 1997;25(Suppl 1):179S–85S.CrossRefPubMedGoogle Scholar
  18. 18.
    Sumimoto H, Miyano K, Takeya R. Molecular composition and regulation of the Nox family NAD(P)H oxidases. Biochem Biophys Res Commun. 2005;338:677–86.CrossRefPubMedGoogle Scholar
  19. 19.
    Kawahara T, Teshima S, Oka A, Sugiyama T, Kishi K, Rokutan K. Type I Helicobacter pylori lipopolysaccharide stimulates toll-like receptor 4 and activates mitogen oxidase 1 in gastric pit cells. Infect Immun. 2001;69:4382–9.CrossRefPubMedGoogle Scholar
  20. 20.
    Handa O, Naito Y, Takagi T, Shimozawa M, Kokura S, Yoshida N, et al. Tumor necrosis factor-alpha-induced cytokine-induced neutrophil chemoattractant-1 (CINC-1) production by rat gastric epithelial cells: role of reactive oxygen species and nuclear factor-kappaB. J Pharmacol Exp Ther. 2004;309:670–6.CrossRefPubMedGoogle Scholar
  21. 21.
    Handa O, Naito Y, Yoshikawa T. Rat cytokine-induced neutrophil chemoattractant-1 (CINC-1) in inflammation. J Clin Biochem Nutr. 2006;38:51–8.CrossRefGoogle Scholar
  22. 22.
    Oh JD, Karam SM, Gordon JI. Intracellular Helicobacter pylori in gastric epithelial progenitors. Proc Natl Acad Sci USA. 2005;102:5186–91.CrossRefPubMedGoogle Scholar
  23. 23.
    Wang J, Brooks EG, Bamford KB, Denning TL, Pappo J, Ernst PB. Negative selection of T cells by Helicobacter pylori as a model for bacterial strain selection by immune evasion. J Immunol. 2001;167:926–34.PubMedGoogle Scholar
  24. 24.
    Fu S, Ramanujam KS, Wong A, Fantry GT, Drachenberg CB, James SP, et al. Increased expression and cellular localization of inducible nitric oxide synthase and cyclooxygenase 2 in Helicobacter pylori gastritis. Gastroenterology. 1999;116:1319–29.CrossRefPubMedGoogle Scholar
  25. 25.
    Tsuji S, Kawano S, Tsujii M, Takei Y, Tanaka M, Sawaoka H, et al. Helicobacter pylori extract stimulates inflammatory nitric oxide production. Cancer Lett. 1996;108:195–200.CrossRefPubMedGoogle Scholar
  26. 26.
    Kuwahara H, Miyamoto Y, Akaike T, Kubota T, Sawa T, Okamoto S, et al. Helicobacter pylori urease suppresses bactericidal activity of peroxynitrite via carbon dioxide production. Infect Immun. 2000;68:4378–83.CrossRefPubMedGoogle Scholar
  27. 27.
    Bryk R, Griffin P, Nathan C. Peroxynitrite reductase activity of bacterial peroxiredoxins. Nature. 2000;407:211–5.CrossRefPubMedGoogle Scholar
  28. 28.
    Gobert AP, McGee DJ, Akhtar M, Mendz GL, Newton JC, Cheng Y, et al. Helicobacter pylori arginase inhibits nitric oxide production by eukaryotic cells: a strategy for bacterial survival. Proc Natl Acad Sci USA. 2001;98:13844–9.CrossRefPubMedGoogle Scholar
  29. 29.
    McGee DJ, Zabaleta J, Viator RJ, Testerman TL, Ochoa AC, Mendz GL. Purification and characterization of Helicobacter pylori arginase, RocF: unique features among the arginase superfamily. Eur J Biochem. 2004;271:1952–62.CrossRefPubMedGoogle Scholar
  30. 30.
    Mori M, Gotoh T. Arginine metabolic enzymes, nitric oxide and infection. J Nutr. 2004;134:2820S–5S (discussion 2853S).PubMedGoogle Scholar
  31. 31.
    Bussiere FI, Chaturvedi R, Cheng Y, Gobert AP, Asim M, Blumberg DR, et al. Spermine causes loss of innate immune response to Helicobacter pylori by inhibition of inducible nitric-oxide synthase translation. J Biol Chem. 2005;280:2409–12.CrossRefPubMedGoogle Scholar
  32. 32.
    Harris AG, Wilson JE, Danon SJ, Dixon MF, Donegan K, Hazell SL. Catalase (KatA) and KatA-associated protein (KapA) are essential to persistent colonization in the Helicobacter pylori SS1 mouse model. Microbiology. 2003;149:665–72.CrossRefPubMedGoogle Scholar
  33. 33.
    Iinuma S, Naito Y, Yoshikawa T, Takahashi S, Takemura T, Yoshida N, et al. In vitro studies indicating antioxidative properties of rebamipide. Dig Dis Sci. 1998;43:35S–9S.CrossRefPubMedGoogle Scholar
  34. 34.
    Ogino K, Hobara T, Ishiyama H, Yamasaki K, Kobayashi H, Izumi Y, et al. Antiulcer mechanism of action of rebamipide, a novel antiulcer compound, on diethyldithiocarbamate-induced antral gastric ulcers in rats. Eur J Pharmacol. 1992;212:9–13.CrossRefPubMedGoogle Scholar
  35. 35.
    Naito Y, Yoshikawa T, Tanigawa T, Sakurai K, Yamasaki K, Uchida M, et al. Hydroxyl radical scavenging by rebamipide and related compounds: electron paramagnetic resonance study. Free Radic Biol Med. 1995;18:117–23.CrossRefPubMedGoogle Scholar
  36. 36.
    Haruma K, Ito M, Kido S, Manabe N, Kitadai Y, Sumii M, et al. Long-term rebamipide therapy improves Helicobacter pylori-associated chronic gastritis. Dig Dis Sci. 2002;47:862–7.CrossRefPubMedGoogle Scholar
  37. 37.
    Suzuki H, Mori M, Seto K, Miyazawa M, Kai A, Suematsu M, et al. Polaprezinc attenuates the Helicobacter pylori-induced gastric mucosal leucocyte activation in Mongolian gerbils—a study using intravital videomicroscopy. Aliment Pharmacol Ther. 2001;15:715–25.CrossRefPubMedGoogle Scholar
  38. 38.
    Suzuki H, Mori M, Seto K, Nagahashi S, Kawaguchi C, Morita H, et al. Polaprezinc, a gastroprotective agent: attenuation of monochloramine-evoked gastric DNA fragmentation. J Gastroenterol. 1999;34(Suppl 11):43–6.PubMedGoogle Scholar
  39. 39.
    Yoshikawa T, Naito Y, Tanigawa T, Yoneta T, Kondo M. The antioxidant properties of a novel zinc-carnosine chelate compound, N-(3-aminopropionyl)-l-histidinato zinc. Biochim Biophys Acta. 1991;1115:15–22.PubMedGoogle Scholar
  40. 40.
    Suzuki H, Miyazawa M, Nagahashi S, Sato M, Bessho M, Nagata H, et al. Rabeprazole treatment attenuated Helicobacter pylori-associated gastric mucosal lesion formation in Mongolian gerbils. J Gastroenterol Hepatol. 2003;18:787–95.CrossRefPubMedGoogle Scholar
  41. 41.
    Handa O, Yoshida N, Fujita N, Tanaka Y, Ueda M, Takagi T, et al. Molecular mechanisms involved in anti-inflammatory effects of proton pump inhibitors. Inflamm Res. 2006;55:476–80.CrossRefPubMedGoogle Scholar
  42. 42.
    Wandall JH. Effects of omeprazole on neutrophil chemotaxis, super oxide production, degranulation, and translocation of cytochrome b-245. Gut. 1992;33:617–21.CrossRefPubMedGoogle Scholar
  43. 43.
    Lapenna D, de Gioia S, Ciofani G, Festi D, Cuccurullo F. Antioxidant properties of omeprazole. FEBS Lett. 1996;382:189–92.CrossRefPubMedGoogle Scholar
  44. 44.
    Carneiro LA, Travassos LH, Soares F, Tattoli I, Magalhaes JG, Bozza MT, et al. Shigella induces mitochondrial dysfunction and cell death in nonmyleoid cells. Cell Host Microbe. 2009;5:123–36.CrossRefPubMedGoogle Scholar
  45. 45.
    Inoue K, Takano H, Oda T, Yanagisawa R, Tamura H, Adachi Y, et al. Soluble cell wall beta-glucan of Candida induces/enhances apoptosis and oxidative stress in murine lung. Immunopharmacol Immunotoxicol. 2009;31:140–5.CrossRefPubMedGoogle Scholar
  46. 46.
    Nam KT, Oh SY, Ahn B, Kim YB, Jang DD, Yang KH, et al. Decreased Helicobacter pylori associated gastric carcinogenesis in mice lacking inducible nitric oxide synthase. Gut. 2004;53:1250–5.CrossRefPubMedGoogle Scholar
  47. 47.
    Greenman C, Stephens P, Smith R, Dalgliesh GL, Hunter C, Bignell G, et al. Patterns of somatic mutation in human cancer genomes. Nature. 2007;446:153–8.CrossRefPubMedGoogle Scholar
  48. 48.
    Ernst P. Review article: the role of inflammation in the pathogenesis of gastric cancer. Aliment Pharmacol Ther. 1999;13(Suppl 1):13–8.CrossRefPubMedGoogle Scholar
  49. 49.
    Nakajima N, Ito Y, Yokoyama K, Uno A, Kinukawa N, Nemoto N, et al. The expression of murine double minute 2 (MDM2) on Helicobacter pylori-infected intestinal metaplasia and gastric cancer. J Clin Biochem Nutr. 2009;44:196–202.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Basel AG 2010

Authors and Affiliations

  1. 1.Department of Molecular Gastroenterology and HepatologyKyoto Prefectural University of MedicineKyotoJapan

Personalised recommendations