Inflammation Research

, Volume 60, Issue 2, pp 127–135 | Cite as

In vitro testing for anti-inflammatory properties of compounds employing peripheral blood mononuclear cells freshly isolated from healthy donors

  • M. Jenny
  • M. Klieber
  • D. Zaknun
  • S. Schroecksnadel
  • K. Kurz
  • M. Ledochowski
  • H. Schennach
  • Dietmar Fuchs
Original Research Paper



Inflammation is crucially involved in a variety of diseases like autoimmune syndromes, cardiovascular and neurodegenerative disorders, cancer, sepsis and allograft rejection.


Freshly isolated human peripheral blood mononuclear cells (PBMCs) are used as a screening assay for anti-inflammatory properties of compounds. Determinations of neopterin production by ELISA and of tryptophan degradation by HPLC are used as read-outs. Results are compared with further markers of immune response and oxidative stress.


Phytohaemagglutinin induced significant tryptophan degradation and neopterin formation in PBMC, which correlated with IFN-γ, TNF-α, soluble cytokine receptors and isoprostane-8. Addition of vitamin C and E suppressed the responses dose-dependently.


The determination of tryptophan degradation and neopterin production in PBMC reflects various pro- and anti-inflammatory cascades that are of relevance also in patients. It constitutes a robust and reliable approach to screen anti-inflammatory or immunosuppressive drugs and may improve throughput, speed and cost-effectiveness in drug discovery.


Tryptophan Kynurenine Indoleamine 2 3-Dioxygenase Neopterin Cytokine Cytokine receptors Interferon-γ 



The authors thank Miss Maria Gleinser for excellent technical assistance.


  1. 1.
    Karagiannidis C, Rückert B, Hense G, Willer G, Menz G, Blaser K, Schmidt-Weber CB. Distinct leukocyte redistribution after glucocorticoid treatment among difficult-to-treat asthmatic patients. Scand J Immunol. 2005;61:187–96.CrossRefPubMedGoogle Scholar
  2. 2.
    Bock HA. Steroid-resistant kidney transplant rejection: diagnosis and treatment. J Am Soc Nephrol. 2001;12:S48–52.PubMedGoogle Scholar
  3. 3.
    Romagnani S. Immunologic influences on allergy and the TH1/TH2 balance. J Allergy Clin Immunol. 2004;113:395–400.CrossRefPubMedGoogle Scholar
  4. 4.
    Nathan CF, Murray HW, Wiebe ME, Rubin BY. Identification of interferon-gamma as the lymphokine that activates human macrophage oxidative metabolism and antimicrobial activity. J Exp Med. 1983;158:670–89.CrossRefPubMedGoogle Scholar
  5. 5.
    Schreck R, Rieber P, Baeuerle PA. Reactive oxygen intermediates as apparently widely used messengers in the activation of the NF-κB transcription factor and HIV-1. EMBO J. 1991;10:2247–58.PubMedGoogle Scholar
  6. 6.
    Asehnoune K, Strassheim D, Mitra S, Kim JY, Abraham E. Involvement of reactive oxygen species in toll-like receptor 4-dependent activation of NF-kappaB. J Immunol. 2004;15:2522–9.Google Scholar
  7. 7.
    Aggarwal BB. Nuclear factor-κB: the enemy within. Cancer Cell. 2004;6:203–8.CrossRefPubMedGoogle Scholar
  8. 8.
    Min KJ, Jou I, Joe E. Plasminogen-induced IL-1beta and TNF-alpha production in microglia is regulated by reactive oxygen species. Biochem Biophys Res Comm. 2003;312:969–74.CrossRefPubMedGoogle Scholar
  9. 9.
    Fuchs D, Hausen A, Reibnegger G, Werner ER, Dierich MP, Wachter H. Neopterin as a marker for activated cell-mediated immunity: application in HIV infection. Immunol Today. 1988;9:150–5.CrossRefPubMedGoogle Scholar
  10. 10.
    Murr C, Widner B, Wirleitner B, Fuchs D. Neopterin as a marker for immune system activation. Curr Drug Metab. 2002;3:175–87.CrossRefPubMedGoogle Scholar
  11. 11.
    Murr C, Fuith LC, Widner B, Wirleitner B, Baier-Bitterlich G, Fuchs D. Increased neopterin concentrations in patients with cancer: indicator of oxidative stress? Anticancer Res. 1999;19:1721–8.PubMedGoogle Scholar
  12. 12.
    Hamerlinck FF. Neopterin: a review. Exp Dermatol. 1999;8:167–76.CrossRefPubMedGoogle Scholar
  13. 13.
    Grammer TB, Fuchs D, Böhm BO, Winkelmann BR, Maerz W. Neopterin as a predictor of total and cardiovascular mortality in individuals undergoing angiography in the Ludwigshafen Risk and Cardiovascular Health study. Clin Chem. 2009;55:115–46.CrossRefGoogle Scholar
  14. 14.
    Byrne GI, Lehmann LK, Landry GJ. Induction of tryptophan catabolism is the mechanism for gamma-interferon-mediated inhibition of intracellular Chlamydia psittaci replication in T24 cells. Infect Immun. 1986;53:347–51.PubMedGoogle Scholar
  15. 15.
    Fuchs D, Möller AA, Reibnegger G, Stöckle E, Werner ER, Wachter H. Decreased serum tryptophan in patients with HIV-1 infection correlates with increased serum neopterin and with neurologic/psychiatric symptoms. J Acquir Immune Defic Syndr. 1990;3:873–6.PubMedGoogle Scholar
  16. 16.
    Schroecksnadel K, Wirleitner B, Winkler C, Fuchs D. Monitoring tryptophan metabolism in chronic immune activation. Clin Chim Acta. 2006;364:82–90.CrossRefGoogle Scholar
  17. 17.
    Huengsberg M, Winer JB, Gompels M, Round R, Ross J, Shahmanesh M. Serum kynurenine-to-tryptophan ratio increases with progressive disease in HIV-infected patients. Clin Chem. 1998;44:858–62.PubMedGoogle Scholar
  18. 18.
    Weinlich G, Murr C, Richardsen L, Winkler C, Fuchs D. Decreased serum tryptophan concentration predicts poor prognosis in malignant melanoma patients. Dermatology. 2007;214:8–14.CrossRefPubMedGoogle Scholar
  19. 19.
    Ploder M, Spittler A, Schroecksnadel K, Neurauter G, Pelinka LM, Roth E, et al. Tryptophan degradation in multiple trauma patients: survivors versus non-survivors. Clin Sci. 2009;116:593–8.CrossRefPubMedGoogle Scholar
  20. 20.
    Chen Y, Guillemin GJ. Kynurenine pathway metabolites in humans: disease and healthy states. Int J Tryptophan Res. 2009;2:1–19.Google Scholar
  21. 21.
    Tattevin P, Monnier D, Tribut O, Dulong J, Bescher N, Mourcin F, et al. Enhanced indoleamine 2,3-dioxygenase activity in patients with severe sepsis and septic shock. J Infect Dis. 2010;201:956–66.CrossRefPubMedGoogle Scholar
  22. 22.
    Weiss G, Murr C, Zoller H, Haun M, Widner B, Ludescher C, et al. Modulation of neopterin formation and tryptophan degradation by Th1- and Th2-derived cytokines in human monocytic cells. Clin Exp Immunol. 1999;116:435–40.CrossRefPubMedGoogle Scholar
  23. 23.
    Winkler C, Ueberall F, Fuchs D. In vitro testing for anti-inflammatory properties of compounds. Clin Chem. 2006;52:1201–2.CrossRefPubMedGoogle Scholar
  24. 24.
    Schroecksnadel K, Fischer B, Schennach H, Weiss G, Fuchs D. Antioxidants down-regulate Th1-type immune response in vitro. Drug Metab Lett. 2007;1:166–71.CrossRefPubMedGoogle Scholar
  25. 25.
    Billiau AD, Roskams T, Van Damme-Lombaerts R, Matthys P, Wouters C. Macrophage activation syndrome: characteristic findings on liver biopsy illustrating the key role of activated, IFN-gamma-producing lymphocytes and IL-6- and TNF-alpha-producing macrophages. Blood. 2005;105:1648–51.CrossRefPubMedGoogle Scholar
  26. 26.
    Murray HW. Interferon-gamma, the activated macrophage, and host defense against microbial challenge. Ann Intern Med. 1988;108:595–608.PubMedGoogle Scholar
  27. 27.
    Diez-Ruiz A, Tilz GP, Zangerle R, Baier-Bitterlich G, Wachter H, et al. Soluble receptors for tumor necrosis factor in clinical laboratory diagnosis. Eur J Haematol. 1995;54:1–8.CrossRefPubMedGoogle Scholar
  28. 28.
    Waldmann TA. The IL-2/IL-15 receptor systems: targets for immunotherapy. J Clin Immunol. 2002;22:51–6.CrossRefPubMedGoogle Scholar
  29. 29.
    Sperner-Unterweger B, Neurauter G, Klieber M, Kurz K, Meraner V, Zeimet A, et al. Enhanced tryptophan degradation in patients with ovarian carcinoma correlates with several serum soluble immune activation markers. Immunobiology (in press).Google Scholar
  30. 30.
    Ploder M, Spittler A, Schroecksnadel K, Neurauter G, Pelinka LM, Roth E, et al. Accelerated tryptophan degradation in trauma and sepsis patients is related to pro-inflammatory response and to the diminished in vitro response of monocytes. Pteridines. 2009;19:54–61.Google Scholar
  31. 31.
    Montuschi P, Barnes P, Roberts LJ 2nd. Insights into oxidative stress: the isoprostanes. Curr Med Chem. 2007;14:703–17.CrossRefPubMedGoogle Scholar
  32. 32.
    Winkler C, Schroecksnadel K, Schennach H, Fuchs D. Vitamin C and E suppress mitogen-stimulated peripheral blood mononuclear cells in vitro. Int Arch Allergy Immunol. 2007;142:127–32.CrossRefPubMedGoogle Scholar
  33. 33.
    Neurauter G, Wirleitner B, Laich A, Schennach H, Weiss G, Fuchs D. Atorvastatin suppresses interferon-γ-induced neopterin formation and tryptophan degradation in human peripheral blood mononuclear cells and in monocytic cell lines. Clin Exp Immunol. 2003;131:264–7.CrossRefPubMedGoogle Scholar
  34. 34.
    Widner B, Werner ER, Schennach H, Wachter H, Fuchs D. Simultaneous measurement of serum tryptophan and kynurenine by HPLC. Clin Chem. 1997;43:2424–6.PubMedGoogle Scholar
  35. 35.
    Huber C, Batchelor JR, Fuchs D, Hausen A, Lang A, Niederwieser D, Reibnegger G, et al. Immune response-associated production of neopterin. Release from macrophages primarily under control of interferon-gamma. J Exp Med. 1984;160:310–6.CrossRefPubMedGoogle Scholar
  36. 36.
    Wirleitner B, Reider D, Ebner S, Böck G, Widner B, Jaeger M, et al. Monocyte-derived dendritic cells release neopterin. J Leukoc Biol. 2002;72:1148–53.PubMedGoogle Scholar
  37. 37.
    Werner ER, Werner-Felmayer G, Fuchs D, Hausen A, Reibnegger G, Wachter H. Parallel induction of tetrahydrobiopterin biosynthesis and indoleamine 2,3-dioxygenase activity in human cells and cell lines by interferon-gamma. Biochem J. 1989;262:861–6.PubMedGoogle Scholar
  38. 38.
    Uyttenhove C, Pilotte L, Théate I, Stroobant V, Colau D, Parmentier N, et al. Evidence for a tumoral immune resistance mechanism based on tryptophan degradation by indoleamine 2,3-dioxygenase. Nat Med. 2003;9:1269–74.CrossRefPubMedGoogle Scholar
  39. 39.
    Samsonov MY, Tilz GP, Egorova O, Reibnegger G, Balabanova RM, Nassonov EL, et al. Serum soluble markers of immune activation and disease activity in systemic lupus erythematosus. Lupus. 1995;4:29–32.CrossRefPubMedGoogle Scholar
  40. 40.
    Diez-Ruiz A, Tilz GP, Gutierrez-Gea F, Gil-Extremera B, Murr C, Wachter H, et al. Neopterin and soluble tumor necrosis factor receptor type I in alcohol-induced cirrhosis. Hepatology. 1985;21:976–8.CrossRefGoogle Scholar
  41. 41.
    Tan PH, Sagoo P, Chan C, Yates JB, Campbell J, Beutelspacher SC, et al. Inhibition of NF-kappa B and oxidative pathways in human dendritic cells by antioxidative vitamins generates regulatory T cells. J Immunol. 2005;174:7633–44.PubMedGoogle Scholar
  42. 42.
    Wirleitner B, Schroecksnadel K, Winkler C, Schennach H, Fuchs D. Resveratrol suppresses interferon-γ-induced biochemical pathways in human peripheral blood mononuclear cells in vitro. Immunol Lett. 2005;100:159–63.CrossRefPubMedGoogle Scholar
  43. 43.
    Zvetkova E, Wirleitner B, Tram NT, Schennach H, Fuchs D. Aqueous extracts of Crinum latifolium (L.) and Camellia sinensis show immunomodulatory properties in human peripheral blood mononuclear cells. Int Immunopharmacol. 2001;1:2143–50.CrossRefPubMedGoogle Scholar
  44. 44.
    Neurauter G, Wirleitner B, Schroecksnadel K, Schennach H, Fuchs D. Wine and grape juice modulate interferon-γ-induced neopterin production and tryptophan degradation in human PBMC. Pteridines. 2004;15:1–9.Google Scholar
  45. 45.
    Winkler C, Wirleitner B, Schroecksnadel K, Schennach H, Fuchs D. Beer down-regulates activated peripheral blood mononuclear cells in vitro. Int Immunopharmacol. 2006;6:390–5.CrossRefPubMedGoogle Scholar
  46. 46.
    Schroecksnadel S, Sucher M, Schroecksnadel K, Sucher R, Brandacher G, Margreiter R, Fuchs D. Influence of immunosuppressive agents on neopterin production and tryptophan degradation in human peripheral blood mononuclear cells. Pteridines. 2009;20:34–5.Google Scholar
  47. 47.
    Schroecksnadel K, Winkler C, Wirleitner B, Schennach H, Fuchs D. Aspirin down-regulates tryptophan degradation in stimulated human peripheral blood mononuclear cells in vitro. Clin Exp Immunol. 2005;140:41–5.CrossRefPubMedGoogle Scholar
  48. 48.
    Jenny M, Santer E, Pirich E, Schennach H, Fuchs D. Δ9-Tetrahydrocannabinol and cannabidiol modulate mitogen-induced tryptophan degradation and neopterin formation in peripheral blood mononuclear cells in vitro. J Neuroimmunol. 2009;207:75–82.CrossRefPubMedGoogle Scholar
  49. 49.
    Girgin G, Baydar T, Ledochowski M, Schennach H, Bolukbasi DN, Sorkun K, Salih B, Sahin G, Fuchs D. Immunomodulatory effects of Turkish propolis: changes in neopterin release and tryptophan degradation. Immunobiology. 2009;214:129–34.CrossRefPubMedGoogle Scholar
  50. 50.
    Winkler C, Wirleitner B, Schroecksnadel K, Schennach H, Mur E, Fuchs D. In vitro effects of two extracts and two pure alkaloid preparations of Uncaria tomentosa on peripheral blood mononuclear cells. Planta Med. 2004;70:205.CrossRefPubMedGoogle Scholar
  51. 51.
    Winkler C, Wirleitner B, Schroecksnadel K, Schennach H, Fuchs D. St. John’s wort (Hypericum perforatum) counteracts cytokine-induced tryptophan catabolism in vitro. Biol Chem. 2004;385:1197–202.CrossRefPubMedGoogle Scholar
  52. 52.
    Jenny M, Santer E, Klein A, Ledochowski M, Schennach H, Ueberall F, et al. Cacao extracts suppress tryptophan degradation of mitogen-stimulated peripheral blood mononuclear cells. J Ethnopharmacol. 2009;207:75–82.Google Scholar
  53. 53.
    Winkler C, Frick B, Schroecksnadel K, Schennach H, Fuchs D. Food preservatives sodium sulfite and sorbic acid suppress mitogen- stimulated peripheral blood mononuclear cells. Food Chem Toxicol. 2006;44:2003–7.CrossRefPubMedGoogle Scholar
  54. 54.
    Winkler C, Wirleitner B, Schroecksnadel K, Schennach H, Fuchs D. In vitro effects of beet root juice on stimulated and unstimulated peripheral blood mononuclear cells. Am J Biochem Biotechnol. 2005;1:181–6.Google Scholar
  55. 55.
    Maier E, Kurz K, Jenny M, Schennach H, Ueberall F, Fuchs D. Food preservatives sodium benzoate and propionic acid and colorant curcumin suppress Th1-type immune response in vitro. Food Chem Toxicol. 2010;48(7):1950–6.CrossRefPubMedGoogle Scholar
  56. 56.
    Aggarwal BB, Van Kuiken ME, Iyer LH, Harikumar KB, Sung B. Molecular targets of nutraceuticals derived from dietary spices: potential role in suppression of inflammation and tumorigenesis. Exp Biol Med. 2009;234:825–49.CrossRefGoogle Scholar
  57. 57.
    Nathan CF. Peroxide and pteridine: a hypothesis on the regulation of macrophage antimicrobial activity by interferon-γ. In: Gresser I, Vilcek J, editors. Interferon 7. London: Academic Press; 1986. p. 125–43.Google Scholar
  58. 58.
    Murr C, Schroecksnadel K, Winklhofer-Roob BM, Mangge H, Böhm BO, Winkelmann BR, et al. Inverse association between serum concentrations of neopterin and antioxidants in patients with and without angiographic coronary artery disease. Atherosclerosis. 2009;202:543–9.CrossRefPubMedGoogle Scholar
  59. 59.
    Hronek M, Zadak Z, Solichova D, Jandik P, Melichar B. The association between specific nutritional antioxidants and manifestation of colorectal cancer. Nutrition. 2000;16:189–91.CrossRefPubMedGoogle Scholar
  60. 60.
    Neurauter G, Grahmann AV, Klieber M, Zeimet A, Ledochowski M, Sperner-Unterweger B, et al. Serum phenylalanine concentrations in patients with ovarian carcinoma correlate with concentrations of immune activation markers and of isoprostane-8. Cancer Lett. 2008;272:141–7.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Basel AG 2010

Authors and Affiliations

  • M. Jenny
    • 1
  • M. Klieber
    • 1
  • D. Zaknun
    • 4
  • S. Schroecksnadel
    • 1
  • K. Kurz
    • 2
  • M. Ledochowski
    • 2
  • H. Schennach
    • 3
  • Dietmar Fuchs
    • 1
  1. 1.Division of Biological Chemistry, BiocenterInnsbruck Medical UniversityInnsbruckAustria
  2. 2.Department of Internal MedicineInnsbruck Medical UniversityInnsbruckAustria
  3. 3.Institute for Blood Transfusion and ImmunologyUniversity ClinicsInnsbruckAustria
  4. 4.Department of PediatricsUniversity Hospital of ViennaViennaAustria

Personalised recommendations