Inflammation Research

, Volume 59, Issue 11, pp 939–947 | Cite as

Inhibition of acid-sensing ion channels in articular chondrocytes by amiloride attenuates articular cartilage destruction in rats with adjuvant arthritis

  • Feng-Lai Yuan
  • Fei-Hu Chen
  • Wei-Guo Lu
  • Xia Li
  • Jian-ping Li
  • Cheng-Wan Li
  • Rui-Sheng Xu
  • Fan-Rong Wu
  • Wei Hu
  • Teng-Yue Zhang
Original Research Paper

Abstract

Objective

The aim of this study was to examine whether drugs such as amiloride that block acid sensing ion channels (ASICs) could attenuate articular cartilage destruction in adjuvant-induced arthritis (AA).

Methods

Articular chondrocytes were isolated from the normal rats, and intracellular calcium ([Ca2+]i) was analyzed with laser scanning confocal microscopy. The cell injury was analyzed with lactate dehydrogenase release assay and electron microscopy. Amiloride or phosphate buffered saline was administered daily to AA rats for 1 week from the time of arthritis onset. Morphology of the articular cartilage was examined by hematoxylin and eosin staining, and Mankin score was calculated. The expression level of type II collagen (COII) and aggrecan mRNA and proteins in the articular cartilage was evaluated by real-time PCR and Western blotting, respectively.

Results

The rapid decrease in extracellular pH (6.0) induced a conspicuous increase in [Ca2+]i in the articular chondrocytes. Amiloride reduced this increase in [Ca2+]i, and inhibited acid-induced articular chondrocyte injury. Amiloride significantly decreased Mankin scores in the articular cartilage in AA rats. COII and aggrecan mRNA and protein expression in the articular cartilage was significantly increased by amiloride.

Conclusion

These findings represent some experimental evidence of a potential role for ASICs in the pathogenesis of articular cartilage destruction in rheumatoid arthritis.

Keywords

Amiloride Adjuvant arthritis Acid sensing ion channel Articular chondrocytes Cartilage breakdown 

References

  1. 1.
    Cragoe EJ Jr, Woltersdorf OW Jr, Bicking JB, Kwong SF, Jones JH. Pyrazine diuretics. II. N-amidino-3-amino-5-substituted 6-halopyrazinecarboxamides. J Med Chem. 1967;10(1):66–75.CrossRefPubMedGoogle Scholar
  2. 2.
    Waldmann R, Lazdunski M. H(+)-gated cation channels: neuronal acid sensors in the NaC/DEG family of ion channels. Curr Opin Neurobiol. 1998;8(3):418–24.CrossRefPubMedGoogle Scholar
  3. 3.
    Xiong ZG, Chu XP, Simon RP. Ca2 + -permeable acid-sensing ion channels and ischemic brain injury. J Membr Biol. 2006;209(1):59–68.CrossRefPubMedGoogle Scholar
  4. 4.
    Zygun DA, Steiner LA, Johnston AJ, Hutchinson PJ, Al-Rawi PG, Chatfield D, Kirkpatrick PJ, Menon DK, Gupta AK. Hyperglycemia and brain tissue pH after traumatic brain injury. Neurosurgery. 2004;55(4):877–81. discussion 82.CrossRefPubMedGoogle Scholar
  5. 5.
    Faisy C, Planquette B, Naline E, Risse PA, Frossard N, Fagon JY, Advenier C, Devillier P. Acid-induced modulation of airway basal tone and contractility: role of acid-sensing ion channels (ASICs) and TRPV1 receptor. Life Sci. 2007;81(13):1094–102.CrossRefPubMedGoogle Scholar
  6. 6.
    Andreas K, Lubke C, Haupl T, Dehne T, Morawietz L, Ringe J, Kaps C, Sittinger M. Key regulatory molecules of cartilage destruction in rheumatoid arthritis: an in vitro study. Arthritis Res Ther. 2008;10(1):R9.CrossRefPubMedGoogle Scholar
  7. 7.
    Sumantran VN, Kulkarni AA, Harsulkar A, Wele A, Koppikar SJ, Chandwaskar R, Gaire V, Dalvi M, Wagh UV. Hyaluronidase and collagenase inhibitory activities of the herbal formulation Triphala guggulu. J Biosci. 2007;32(4):755–61.CrossRefPubMedGoogle Scholar
  8. 8.
    Mathy-Hartert M, Jacquemond-Collet I, Priem F, Sanchez C, Lambert C, Henrotin Y. Curcumin inhibits pro-inflammatory mediators and metalloproteinase-3 production by chondrocytes. Inflamm Res. 2009;58(12):899–908.CrossRefPubMedGoogle Scholar
  9. 9.
    Razaq S, Wilkins RJ, Urban JP. The effect of extracellular pH on matrix turnover by cells of the bovine nucleus pulposus. Eur Spine J. 2003;12(4):341–9.CrossRefPubMedGoogle Scholar
  10. 10.
    Martinez D, Vermeulen M, Trevani A, Ceballos A, Sabatte J, Gamberale R, Alvarez ME, Salamone G, Tanos T, Coso OA, et al. Extracellular acidosis induces neutrophil activation by a mechanism dependent on activation of phosphatidylinositol 3-kinase/Akt and ERK pathways. J Immunol. 2006;176(2):1163–71.PubMedGoogle Scholar
  11. 11.
    Mbvundula EC, Bunning RA, Rainsford KD. Arthritis and cannabinoids: HU-210 and Win-55, 212–2 prevent IL-1alpha-induced matrix degradation in bovine articular chondrocytes in vitro. J Pharm Pharmacol. 2006;58(3):351–8.CrossRefPubMedGoogle Scholar
  12. 12.
    Jahr H, van Driel M, van Osch GJ, Weinans H, van Leeuwen JP. Identification of acid-sensing ion channels in bone. Biochem Biophys Res Commun. 2005;337(1):349–54.CrossRefPubMedGoogle Scholar
  13. 13.
    Bendele A, McAbee T, Sennello G, Frazier J, Chlipala E, McCabe D. Efficacy of sustained blood levels of interleukin-1 receptor antagonist in animal models of arthritis: comparison of efficacy in animal models with human clinical data. Arthritis Rheum. 1999;42(3):498–506.CrossRefPubMedGoogle Scholar
  14. 14.
    Vukicevic M, Kellenberger S. Modulatory effects of acid-sensing ion channels on action potential generation in hippocampal neurons. Am J Physiol Cell Physiol. 2004;287(3):C682–90.CrossRefPubMedGoogle Scholar
  15. 15.
    Dwyer JM, Rizzo SJ, Neal SJ, Lin Q, Jow F, Arias RL, Rosenzweig-Lipson S, Dunlop J, Beyer CE. Acid sensing ion channel (ASIC) inhibitors exhibit anxiolytic-like activity in preclinical pharmacological models. Psychopharmacology (Berl). 2009;203(1):41–52.CrossRefGoogle Scholar
  16. 16.
    Ponce A. Expression of voltage dependent potassium currents in freshly dissociated rat articular chondrocytes. Cell Physiol Biochem. 2006;18(1–3):35–46.CrossRefPubMedGoogle Scholar
  17. 17.
    Yao H, Haddad GG. Calcium and pH homeostasis in neurons during hypoxia and ischemia. Cell Calcium. 2004;36(3–4):247–55.CrossRefPubMedGoogle Scholar
  18. 18.
    Chen X, Kalbacher H, Grunder S. Interaction of acid-sensing ion channel (ASIC) 1 with the tarantula toxin psalmotoxin 1 is state dependent. J Gen Physiol. 2006.Google Scholar
  19. 19.
    Bonnans C, Fukunaga K, Levy MA, Levy BD. Lipoxin A(4) regulates bronchial epithelial cell responses to acid injury. Am J Pathol. 2006;168(4):1064–72.CrossRefPubMedGoogle Scholar
  20. 20.
    Lefkoe TP, Trafton PG, Ehrlich MG, Walsh WR, Dennehy DT, Barrach HJ, Akelman E. An experimental model of femoral condylar defect leading to osteoarthrosis. J Orthop Trauma. 1993;7(5):458–67.CrossRefPubMedGoogle Scholar
  21. 21.
    Yuan FL, Chen FH, Lu WG, Li X, Wu FR, Li JP, Li CW, Wang Y, Zhang TY, Hu W (2010) Acid-sensing ion channel 1a mediates acid-induced increases in intracellular calcium in rat articular chondrocytes. Mol Cell Biochem. doi:10.1007/s11010-010-0412-y.
  22. 22.
    Wang W, Xu J, Kirsch T. Annexin-mediated Ca2 + influx regulates growth plate chondrocyte maturation and apoptosis. J Biol Chem. 2003;278(6):3762–9.CrossRefPubMedGoogle Scholar
  23. 23.
    Xiong ZG, Zhu XM, Chu XP, Minami M, Hey J, Wei WL, MacDonald JF, Wemmie JA, Price MP, Welsh MJ, et al. Neuroprotection in ischemia: blocking calcium-permeable acid-sensing ion channels. Cell. 2004;118(6):687–98.CrossRefPubMedGoogle Scholar
  24. 24.
    Jasti J, Furukawa H, Gonzales EB, Gouaux E. Structure of acid-sensing ion channel 1 at 1.9 A resolution and low pH. Nature. 2007;449(7160):316–23.CrossRefPubMedGoogle Scholar
  25. 25.
    Saini HK, Elimban V, Ozcelikay AT, Dhalla NS. Mechanisms of cardiodepression by an Na + -H + exchange inhibitor methyl-N-isobutyl amiloride (MIA) on the heart: lack of beneficial effects in ischemia-reperfusion injury. Can J Physiol Pharmacol. 2007;85(1):67–78.CrossRefPubMedGoogle Scholar
  26. 26.
    Ikeuchi M, Kolker SJ, Burnes LA, Walder RY, Sluka KA. Role of ASIC3 in the primary and secondary hyperalgesia produced by joint inflammation in mice. Pain. 2008;137(3):662–9.CrossRefPubMedGoogle Scholar
  27. 27.
    Wu MH, Urban JP, Cui ZF, Cui Z, Xu X. Effect of extracellular ph on matrix synthesis by chondrocytes in 3D agarose gel. Biotechnol Prog. 2007;23(2):430–4.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Basel AG 2010

Authors and Affiliations

  • Feng-Lai Yuan
    • 1
    • 2
  • Fei-Hu Chen
    • 1
  • Wei-Guo Lu
    • 2
  • Xia Li
    • 2
  • Jian-ping Li
    • 2
  • Cheng-Wan Li
    • 2
  • Rui-Sheng Xu
    • 2
  • Fan-Rong Wu
    • 1
  • Wei Hu
    • 1
  • Teng-Yue Zhang
    • 1
  1. 1.College of PharmacyAnhui Medical UniversityHefeiPeople’s Republic of China
  2. 2.The Third Hospital Affiliated to Nantong UniversityWuxiPeople’s Republic of China

Personalised recommendations