Inflammation Research

, Volume 59, Issue 9, pp 731–741 | Cite as

Combination therapy with dexamethasone and osteoprotegerin protects against arthritis-induced bone alterations in antigen-induced arthritis of the rat

  • P. Oelzner
  • S. Fleissner-Richter
  • R. Bräuer
  • G. Hein
  • G. Wolf
  • T. Neumann
Original Research Paper

Abstract

Objective

To investigate the influence of a combined therapy consisting of dexamethasone and osteoprotegerin (OPG) on bone alterations and disease activity in antigen-induced arthritis (AIA) in the rat.

Methods

AIA rats received dexamethasone (0.25 mg kg−1 day−1, i.p.), OPG (2.5 mg kg−1 day−1, i.p.), or a combination of both at regular intervals for 21 consecutive days. At the end of the treatment, bone structure was analyzed by histomorphometry. Primary spongiosa was measured using linear scanning.

Results

AIA led to significant periarticular and axial bone loss. Dexamethasone monotherapy substantially suppressed joint swelling without inhibiting bone loss of the secondary spongiosa, whereas OPG monotherapy showed no anti-inflammatory effect. Despite reduction of bone resorption, OPG did not inhibit AIA-induced bone loss. In contrast, the combination of dexamethasone and OPG not only produced an anti-inflammatory effect, but also resulted in inhibition of periarticular and axial bone loss. OPG increased trabecular number of the primary spongiosa whilst combination therapy led to an increase in both trabecular number and trabecular width.

Conclusion

The principle of combining a glucocorticoid together with inhibition of the receptor activator of NF-kappaB ligand (RANKL) may be an effective bone-saving therapy in rheumatoid arthritis.

Keywords

Arthritis models Bone Corticosteroids Osteoprotegerin 

References

  1. 1.
    Gough AK, Lilley J, Eyre S, Holder RL, Emery P. Generalised bone loss in patients with early rheumatoid arthritis. Lancet. 1994;344:23–7.CrossRefPubMedGoogle Scholar
  2. 2.
    Lodder MC, Haugeberg G, Lems WF, Uhlig T, Orstavik RE, Kostense PJ, et al. Oslo-Truro-Amsterdam (OSTRA) Collaborative Study. Radiographic damage associated with low bone mineral density and vertebral deformities in rheumatoid arthritis: the Oslo-Truro-Amsterdam (OSTRA) collaborative study. Arthritis Rheum. 2003;49:209–15.CrossRefPubMedGoogle Scholar
  3. 3.
    Schett G, Redlich K, Hayer S, Zwerina J, Bolon B, Dunstan C, et al. Osteoprotegerin protects against generalized bone loss in tumor necrosis factor-transgenic mice. Arthritis Rheum. 2003;48:2042–51.CrossRefPubMedGoogle Scholar
  4. 4.
    Kirwan JR. The effect of glucocorticoids on joint destruction in rheumatoid arthritis. The Arthritis and Rheumatism Council Low-Dose Glucocorticoid Study Group. N Engl J Med. 1995;333:142–6.CrossRefPubMedGoogle Scholar
  5. 5.
    Van Everdingen AA, Jacobs JW, Siewertsz van Reesema DR, Bijlsma JW. Low-dose prednisone therapy for patients with early active rheumatoid arthritis: clinical efficacy, disease-modifying properties, and side effects: a randomized, double-blind, placebo-controlled clinical trial. Ann Intern Med. 2002;136:1–12.PubMedGoogle Scholar
  6. 6.
    Wassenberg S, Rau R, Steinfeld P, Zeidler H. Very low-dose prednisolone in early rheumatoid arthritis retards radiographic progression over two years: a multicenter, double-blind, placebo-controlled trial. Arthritis Rheum. 2005;52:3371–80.CrossRefPubMedGoogle Scholar
  7. 7.
    Svensson B, Boonen A, Albertsson K, van der Heijde D, Keller C, Hafström I. Low-dose prednisolone in addition to the initial disease-modifying antirheumatic drug in patients with early active rheumatoid arthritis reduces joint destruction and increases the remission rate: a two-year randomized trial. Arthritis Rheum. 2005;52:3360–70.CrossRefPubMedGoogle Scholar
  8. 8.
    Haugeberg G, Orstavik RE, Uhlig T, Falch JA, Halse JI, Kvien TK. Clinical decision rules in rheumatoid arthritis: do they identify patients at high risk for osteoporosis? Testing clinical criteria in a population based cohort of patients with rheumatoid arthritis recruited from the Oslo Rheumatoid Arthritis Register. Ann Rheum Dis. 2002;61:1085–9.CrossRefPubMedGoogle Scholar
  9. 9.
    Oelzner P, Schwabe A, Lehmann G, Eidner T, Franke S, Wolf G, et al. Significance of risk factors for osteoporosis is dependent on gender and menopause in rheumatoid arthritis. Rheumatol Int. 2008;28:1143–50.CrossRefPubMedGoogle Scholar
  10. 10.
    Vidal NO, Brändström H, Jonsson KB, Ohlsson C. Osteoprotegerin mRNA is expressed in primary human osteoblast-like cells: down-regulation by glucocorticoids. J Endocrinol. 1998;159:191–5.CrossRefPubMedGoogle Scholar
  11. 11.
    Gravallese EM, Manning C, Tsay A, Naito A, Pan C, Amento E, et al. Synovial tissue in rheumatoid arthritis is a source of osteoclast differentiation factor. Arthritis Rheum. 2000;43:250–8.CrossRefPubMedGoogle Scholar
  12. 12.
    Takayanagi H, Iizuka H, Juji T, Nakagawa T, Yamamoto A, Miyazaki T, et al. Involvement of receptor activator of nuclear factor kappaB ligand/osteoclast differentiation factor in osteoclastogenesis from synoviocytes in rheumatoid arthritis. Arthritis Rheum. 2000;43:259–69.CrossRefPubMedGoogle Scholar
  13. 13.
    Mancini L, Paul-Clark MJ, Rosignoli G, Hannon R, Martin JE, Macintyre I, et al. Calcitonin and prednisolone display antagonistic actions on bone and have synergistic effects in experimental arthritis. Am J Pathol. 2007;170:1018–27.CrossRefPubMedGoogle Scholar
  14. 14.
    Haynes D, Crotti T, Weedon H, Slavotinek J, Au V, Coleman M, et al. Modulation of RANKL and osteoprotegerin expression in synovial tissue from patients with rheumatoid arthritis in response to disease-modifying antirheumatic drug treatment and correlation with radiologic outcome. Arthritis Rheum. 2008;59:911–20.CrossRefPubMedGoogle Scholar
  15. 15.
    Ainola M, Mandelin J, Liljeström M, Konttinen YT, Salo J. Imbalanced expression of RANKL and osteoprotegerin mRNA in pannus tissue of rheumatoid arthritis. Clin Exp Rheumatol. 2008;26:240–6.PubMedGoogle Scholar
  16. 16.
    Kearns AE, Khosla S, Kostenuik PJ. Receptor activator of nuclear factor kappaB ligand and osteoprotegerin regulation of bone remodeling in health and disease. Endocr Rev. 2008;29:155–92.CrossRefPubMedGoogle Scholar
  17. 17.
    Kong YY, Feige U, Sarosi I, Bolon B, Tafuri A, Morony S, et al. Activated T cells regulate bone loss and joint destruction in adjuvant arthritis through osteoprotegerin ligand. Nature. 1999;402:304–9.CrossRefPubMedGoogle Scholar
  18. 18.
    Romas E, Sims NA, Hards DK, Lindsay M, Quinn JW, Ryan PF, et al. Osteoprotegerin reduces osteoclast numbers and prevents bone erosion in collagen-induced arthritis. Am J Pathol. 2002;161:1419–27.PubMedGoogle Scholar
  19. 19.
    Saidenberg-Kermanac’h N, Corrado A, Lemeiter D, de Vernejoul MC, Boissier MC, Cohen-Solal ME. TNF-alpha antibodies and osteoprotegerin decrease systemic bone loss associated with inflammation through distinct mechanisms in collagen-induced arthritis. Bone. 2004;35:1200–7.CrossRefPubMedGoogle Scholar
  20. 20.
    Redlich K, Görtz B, Hayer S, Zwerina J, Doerr N, Kostenuik P, et al. Repair of local bone erosions and reversal of systemic bone loss upon therapy with anti-tumor necrosis factor in combination with osteoprotegerin or parathyroid hormone in tumor necrosis factor-mediated arthritis. Am J Pathol. 2004;164:543–55.PubMedGoogle Scholar
  21. 21.
    Zwerina J, Hayer S, Tohidast-Akrad M, Bergmeister H, Redlich K, Feige U, et al. Single and combined inhibition of tumor necrosis factor, interleukin-1, and RANKL pathways in tumor necrosis factor-induced arthritis: effects on synovial inflammation, bone erosion, and cartilage destruction. Arthritis Rheum. 2004;50:277–90.CrossRefPubMedGoogle Scholar
  22. 22.
    Neumann T, Oelzner P, Petrow PK, Thoss K, Hein G, Stein G, et al. Osteoprotegerin reduces the loss of periarticular bone mass in primary and secondary spongiosa but does not influence inflammation in rat antigen-induced arthritis. Inflamm Res. 2006;55:32–9.CrossRefPubMedGoogle Scholar
  23. 23.
    Cohen SB, Dore RK, Lane NE, Ory PA, Peterfy CG, Sharp JT, et al. Denosumab treatment effects on structural damage, bone mineral density, and bone turnover in rheumatoid arthritis: a twelve-month, multicenter, randomized, double-blind, placebo-controlled, phase II clinical trial. Arthritis Rheum. 2008;58:1299–309.CrossRefPubMedGoogle Scholar
  24. 24.
    Kondo T, Kitazawa R, Yamaguchi A, Kitazawa S. Dexamethasone promotes osteoclastogenesis by inhibiting osteoprotegerin through multiple levels. J Cell Biochem. 2008;103:335–45.CrossRefPubMedGoogle Scholar
  25. 25.
    Bräuer R, Kette H, Henzgen S, Thoss K. Influence of cyclosporin A on cytokine levels in synovial fluid and serum of rats with antigen-induced arthritis. Agents Actions. 1994;41:96–8.CrossRefPubMedGoogle Scholar
  26. 26.
    Thoss K, Henzgen S, Petrow PK, Katenkamp D, Bräuer R. Immunomodulation of rat antigen-induced arthritis by leflunomide alone and in combination with cyclosporine A. Inflamm Res. 1996;45:103–7.CrossRefPubMedGoogle Scholar
  27. 27.
    Oelzner P, Bräuer R, Henzgen S, Thoss K, Wünsche B, Hersmann G, et al. Periarticular bone alterations in chronic antigen-induced arthritis: Free and liposome-encapsulated clodronate prevent loss of bone mass in the secondary spongiosa. Clin Immunol. 1999;90:79–88.CrossRefPubMedGoogle Scholar
  28. 28.
    Oelzner P, Kunze A, Henzgen S, Thoss K, Hein G, Stein G, et al. High-dose clodronate therapy prevents joint destruction in chronic antigen-induced arthritis of the rat but inhibits bone formation at the axial skeleton. Inflamm Res. 2000;49:424–33.CrossRefPubMedGoogle Scholar
  29. 29.
    Zimmermann M. Ethical guidelines for investigations of experimental pain in conscious animals. Pain. 1983;16:109–10.CrossRefPubMedGoogle Scholar
  30. 30.
    Campagnuolo G, Bolon B, Feige U. Kinetics of bone protection by recombinant osteoprotegerin therapy in Lewis rats with adjuvant arthritis. Arthritis Rheum. 2002;46:1926–36.CrossRefPubMedGoogle Scholar
  31. 31.
    Delling G. Endocrine bone diseases. Stuttgart: Fischer; 1975. p. 3–33.Google Scholar
  32. 32.
    Baron R. Anatomy and ultrastructure of bone. In: Favus MJ, editor. Primer on the metabolic bone diseases and disorders of mineral metabolism. New York: Raven; 1993. p. 3–9.Google Scholar
  33. 33.
    Murakami H, Nakamura T, Tsurukami H, Abe M, Barbier A, Suzuki K. Effects of tiludronate on bone mass, structure and turnover at the epiphyseal, primary and secondary spongiosa in the proximal tibia of growing rats after sciatic neurectomy. J Bone Miner Res. 1994;9:1355–64.CrossRefPubMedGoogle Scholar
  34. 34.
    Malluche HH, Faugere MC. Atlas of mineralized bone histology. Basel: Karger, 1986.Google Scholar
  35. 35.
    Parfitt AM, Drezner MK, Glorieux FH, Kanis JA, Malluche H, Meunier PJ, et al. Bone histomorphometry: Standardization of nomenclature, symbols and units. Report of the ASBMR Histomorphometry Nomenclature Committee. J Bone Miner Res. 1987;2:595–610.CrossRefPubMedGoogle Scholar
  36. 36.
    Ma YF, Jee WS, Ke HZ, Lin BY, Liang XG, Li M, et al. Human parathyroid hormone (1–38) restores cancellous bone to the immobilized, osteopenic proximal tibial metaphysis in rats. J Bone Miner Res. 1995;10:496–505.CrossRefPubMedGoogle Scholar
  37. 37.
    Erben RG, Kohn B, Rambeck WA, Zucker H. Histomorphometric analysis of the rat proximal tibial metaphysis by “linear scanning”. Scanning Microsc. 1990;4:625–38.PubMedGoogle Scholar
  38. 38.
    Einspruch EL. An introductory guide to SPSS for windows. London: Sage; 2005.Google Scholar
  39. 39.
    Makrygiannakis D, af Klint E, Catrina SB, Botusan IR, Klareskog E, Klareskog L, et al. Intraarticular corticosteroids decrease synovial RANKL expression in inflammatory arthritis. Arthritis Rheum. 2006;54:1463–72.CrossRefPubMedGoogle Scholar
  40. 40.
    Brandstrom H, Jonsson KB, Vidal O, Ljunghall S, Ohlsson C, Ljunggren O. Tumor necrosis factor-alpha and -beta upregulate the levels of osteoprotegerin mRNA in human osteosarcoma MG-63 cells. Biochem Biophys Res Commun. 1998;248:454–7.CrossRefPubMedGoogle Scholar
  41. 41.
    Hofbauer LC, Lacey DL, Dunstan CR, Spelsberg TC, Riggs BL, Khosla S. Interleukin-1beta and tumor necrosis factor-alpha, but not interleukin-6, stimulate osteoprotegerin ligand gene expression in human osteoblastic cells. Bone. 1999;25:255–9.CrossRefPubMedGoogle Scholar
  42. 42.
    Yano K, Nakagawa N, Yasuda H, Tsuda E, Higashio K. Synovial cells from a patient with rheumatoid arthritis produce osteoclastogenesis inhibitory factor/osteoprotegerin: reciprocal regulation of the production by inflammatory cytokines and basic fibroblast growth factor. J Bone Miner Metab. 2001;19:365–72.CrossRefPubMedGoogle Scholar
  43. 43.
    Kubota A, Hasegawa K, Suguro T, Koshihara Y. Tumor necrosis factor-alpha promotes the expression of osteoprotegerin in rheumatoid synovial fibroblasts. J Rheumatol. 2004;31:426–35.PubMedGoogle Scholar
  44. 44.
    Granet C, Maslinski W, Miossec P. Increased AP-1 and NF-kappaB activation and recruitment with the combination of the proinflammatory cytokines IL-1beta, tumor necrosis factor alpha and IL-17 in rheumatoid synoviocytes. Arthritis Res Ther. 2004;6:R190–8.CrossRefPubMedGoogle Scholar
  45. 45.
    Tunyogi-Csapo M, Kis-Toth K, Radacs M, Farkas B, Jacobs JJ, Finnegan A, et al. Cytokine-controlled RANKL and osteoprotegerin expression by human and mouse synovial fibroblasts: Fibroblast-mediated pathologic bone resorption. Arthritis Rheum. 2008;58:2397–408.CrossRefPubMedGoogle Scholar
  46. 46.
    Stolina M, Adamu S, Ominsky M, Dwyer D, Asuncion F, Geng Z, et al. RANKL is a marker and mediator of local and systemic bone loss in two rat models of inflammatory arthritis. J Bone Miner Res. 2005;20:1756–65.CrossRefPubMedGoogle Scholar
  47. 47.
    Loveridge N, Farquharson C, Palmer R, Lobley GE, Flint DJ. Growth hormone and longitudinal bone growth in vivo: short-term effect of a growth hormone antiserum. J Endocrinol. 1995;146:55–62.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Basel AG 2010

Authors and Affiliations

  • P. Oelzner
    • 1
  • S. Fleissner-Richter
    • 1
  • R. Bräuer
    • 2
  • G. Hein
    • 1
  • G. Wolf
    • 1
  • T. Neumann
    • 1
  1. 1.Department of Internal Medicine IIIUniversity Hospital of JenaJenaGermany
  2. 2.Institute of PathologyUniversity Hospital of JenaJenaGermany

Personalised recommendations