Inflammation Research

, Volume 59, Issue 8, pp 587–595

The chondroprotective effects of ferulic acid on hydrogen peroxide-stimulated chondrocytes: inhibition of hydrogen peroxide-induced pro-inflammatory cytokines and metalloproteinase gene expression at the mRNA level

  • M. P. Chen
  • S. H. Yang
  • C. H. Chou
  • K. C. Yang
  • C. C. Wu
  • Y. H. Cheng
  • Feng-Huei Lin
Original Research Paper

Abstract

Objective

The objective of the study is to evaluate the effect of ferulic acid (FA), an antioxidant from the Chinese herb Dong-Gui [Chinese angelica, Angelica sinensis (Oliv.) Diels], on the regulation of various genes in hydrogen peroxide-stimulated porcine chondrocytes at the mRNA level.

Methods

The effect of FA and the effective concentration of FA on porcine chondrocytes was evaluated by the lactate dehydrogenase, WST-1, crystal violet assay, and a chemical luminescence assay. Gene expression in hydrogen peroxide-stimulated chondrocytes either pre- or post-treated with FA was evaluated by real-time PCR.

Results

Chondrocytes pre-treated with 40 μM FA decreased the hydrogen peroxide-induced interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α), and MMP-1 and partially restored SOX9 gene expression. Post-treatment with 40 μM FA also decreased the expression of MMP-1 and MMP-13.

Conclusion

FA decreased the hydrogen peroxide-induced IL-1β, TNF-α, MMP-1 and MMP-13 and increased SOX9 gene expression. These findings suggest that FA may prove to be important in the treatment of osteoarthritis. Further research is needed.

Keywords

Osteoarthritis Chondrocyte Hydrogen peroxide Ferulic acid Antioxidant 

References

  1. 1.
    Mankin HJ. The response for articular cartilage to mechanical injury. J Bone Joint Surg Am. 1982;64:460–6.PubMedGoogle Scholar
  2. 2.
    Frenkel SR, Di Cesare PE. Degeneration and repair of articular cartilage. Front Biosci. 1999;4:671–85.CrossRefGoogle Scholar
  3. 3.
    Aigner T, Sachse A, Gebhard PM, Roach HI. Osteoarthritis: pathobiology targets and ways for therapeutic intervention. Adv Drug Deliv Rev. 2006;58:128–49.CrossRefPubMedGoogle Scholar
  4. 4.
    Bubici C, Papa S, Dean K, Franzoso G. Mutual cross-talk between reactive oxygen species and nuclear factor-kappa B: molecular basis and biological significance. Oncogene. 2006;25:6731–48.CrossRefPubMedGoogle Scholar
  5. 5.
    Tiku ML, Shah R, Allison GT. Evidence linking chondrocyte lipid peroxidation to cartilage matrix protein degradation. J Biol Chem. 2000;275:20069–76.CrossRefPubMedGoogle Scholar
  6. 6.
    Situnayake RD, Thurnham DI, Kootathep S, Chirico S, Lunec J, Davis M. Chain breaking antioxidant status rheumatoid arthritis: clinical and laboratory correlates. Ann Rheum Dis. 1992;50:81–6.CrossRefGoogle Scholar
  7. 7.
    Taysi S, Polat F, Gul M, Sari RA, Bakan E. Lipid peroxidation, some extracellular antioxidants, and antioxidant enzymes in serum of patients with rheumatoid arthritis. Rheumatol Int. 2002;21:200–4.CrossRefPubMedGoogle Scholar
  8. 8.
    Henrotin Y, Deberg M, Christgau S, Henriksen D, Seidel L, Reginster JY. Type II collagen derived fragment is a new marker predictive of osteoarthritic progression. Osteoporos Int. 2002;13:S17.Google Scholar
  9. 9.
    Hedbom E, Häuselmann HJ. Molecular aspects of pathogenesis in osteoarthritis: the role of inflammation. Cell Mol Life Sci. 2002;59:45–53.CrossRefPubMedGoogle Scholar
  10. 10.
    Afonso V, Champy R, Mitrovic D, Collin P, Lomri A. Reactive oxygen species and superoxide dismutases: role in joint diseases. Joint Bone Spine. 2007;74:324–9.CrossRefPubMedGoogle Scholar
  11. 11.
    Altindag O, Erel O, Aksoy N, Selek S, Celik H, Karaoglanoglu M. Increased oxidative stress and its relation with collagen metabolism in knee osteoarthritis. Rheumatol Int. 2007;27:339–44.CrossRefPubMedGoogle Scholar
  12. 12.
    Mathy-Hartert M, Hogge L, Sanchez C, Deby-Dupont G, Crielaard JM, Henrotin Y. Interleukin-1β and interleukin-6 disturb the antioxidant enzyme system in bovine chondrocytes: a possible explanation for oxidative stress generation. Osteoarthr Cartil. 2008;16:756–63.CrossRefPubMedGoogle Scholar
  13. 13.
    Asada S, Fukuda K, Oh M, Hamanishi C, Tanaka S. Effect of hydrogen peroxide on the metabolism of articular chondrocytes. Inflamm Res. 1999;48:399–403.CrossRefPubMedGoogle Scholar
  14. 14.
    Schalkwijk J, van den Berg WB, van de Putte LBA, Joosten LAB. An experiment model for hydrogen peroxide-induced tissue damage. Arthritis Rheum. 1986;29:532–7.CrossRefPubMedGoogle Scholar
  15. 15.
    Martin G, Andriamanalijaona R, Mathy-Hartert M, Henrotin Y, Pujol JP. Comparative effects of IL-1β and H2O2 on catabolic and anabolic gene expression in bovine chondrocyte. Osteoarthr Cartil. 2005;13:915–24.CrossRefPubMedGoogle Scholar
  16. 16.
    Asada S, Fukuda K, Nishisaka F, Matsukawa M, Hamanisi C. Hydrogen peroxide induces apoptosis of chondrocytes; involvement of calcium ion and extracellular signal-regulated protein kinase. Inflamm Res. 2001;50:19–23.CrossRefPubMedGoogle Scholar
  17. 17.
    Ferreira Mendes A, Caramona MM, Carvalho AP, Lopes MC. Hydrogen peroxide mediates IL-1β-induced AP-1 activation in articular chondrocytes: implications for the regulation of iNOS expression. Cell Biol Toxicol. 2003;19:203–14.CrossRefPubMedGoogle Scholar
  18. 18.
    Trombino S, Serini S, Dinicuolo F, Celleno L, Ando S, Picci N, et al. Antioxidant effect of ferulic acid in isolated membranes and intact cells: synergistic interactions with tocopherol, carotene, and ascorbic acid. J Agric Food Chem. 2004;53:2411–20.CrossRefGoogle Scholar
  19. 19.
    Sudheer AR, Muthukumaran S, Kalpana C, Srinivasan M, Menon VP. Protective effect of ferulic acid on nicotine-induced DNA damage and cellular changes in cultured rat peripheral blood lymphocytes. Toxicol In Vitro. 2007;21:576–85.CrossRefPubMedGoogle Scholar
  20. 20.
    Balasubashini MS, Rukkumani R, Viswanathan P, Menonl VP. Ferulic acid alleviates lipid peroxidation in diabetic rats. Phytother Res. 2004;18:310–4.CrossRefPubMedGoogle Scholar
  21. 21.
    Chang CH, Liu CH, Chou CH, Lin FH. Gelatin/HA/C6S tri-copolymer as the scaffold for cartilage tissue engineering. Biomaterials. 2003;24:4853–8.CrossRefPubMedGoogle Scholar
  22. 22.
    Saotome K, Mortia H, Umeda M. Cytotoxicity with simplified crystal violet staining method using microtitre plates and its application to injection drugs. Toxicol In Vitro. 1989;3:317–21.CrossRefGoogle Scholar
  23. 23.
    Chiba K, Kawakami K, Tohyama K. Simultaneous evaluation of cell viability by neutral red, MTT and crystal violet staining assays of the same cells. Toxicol In Vitro. 1998;12:251–8.CrossRefGoogle Scholar
  24. 24.
    Gillies RJ, Didier N, Denton M. Determination of cell number in monolayer cultures. Anal Biochem. 1986;159:109–13.CrossRefPubMedGoogle Scholar
  25. 25.
    Goldring MB. Update on the biology of the chondrocyte and new approaches to treating cartilage diseases. Best Pract Res Clin Rheum. 2006;20:1003–25.CrossRefGoogle Scholar
  26. 26.
    Goldring MB, Berenbaum F. The regulation of chondrocyte function by proinflammatory mediators. Clin Orthop Relat Res. 2004;427S:S37–46.CrossRefGoogle Scholar
  27. 27.
    Shah R, Raska K, Tiku ML. The presence of molecular markers of in vivo lipid peroxidation in osteoarthritic cartilage. Arthritis Rheum. 2005;52:2799–807.CrossRefPubMedGoogle Scholar
  28. 28.
    Vincenti MP, Brinckerhoff CE. Transcriptional regulation of collagenase (MMP-1, MMP-13) genes in arthritis: integration of complex signaling pathways for the recruitment of gene-specific transcription factors. Arthritis Res Ther. 2002;4:157–64.Google Scholar
  29. 29.
    Lefebvre V, de Crombrugghe B. Toward understanding SOX9 function in chondrocyte differentiation. Matrix Biol. 1998;16:529–40.CrossRefPubMedGoogle Scholar
  30. 30.
    Tew SR, Clegg PD, Brew CJ, Redmond CM, Hardingham TE. SOX9 transduction of a human chondrocytic cell line identifies novel genes regulated in primary human chondrocytes and in osteoarthritis. Arthritis Res Ther. 2007;9:R107.CrossRefPubMedGoogle Scholar
  31. 31.
    Fernandes JC, Martel-Pelletier J, Pelletier JP. The role of cytokines in osteoarthritis pathophysiology. Biorheology. 2002;39:237–46.PubMedGoogle Scholar
  32. 32.
    Drissi H, Zuscik M, Rosier R, O’Keefe R. Transcriptional regulation of chondrocytes maturation: potential involvement of transcription factors in OA pathogenesis. Mol Aspects Med. 2005;26:169–79.CrossRefPubMedGoogle Scholar
  33. 33.
    Henrotin Y, Kurz B, Aigner T. Oxygen and reactive oxygen species in cartilage degradation: friends or foes. Osteoarthr Cartil. 2005;13:643–54.CrossRefPubMedGoogle Scholar
  34. 34.
    Henrotin YE, Bruckner P, Pujol JPL. The role of reactive oxygen species in homeostasis and degradation of cartilage. Osteoarthr Cartil. 2003;11:747–55.CrossRefPubMedGoogle Scholar
  35. 35.
    Berenbaum F. Signaling transduction: target in osteoarthritis. Curr Opin Rheumatol. 2004;16:616–22.CrossRefPubMedGoogle Scholar
  36. 36.
    Lo YYC, Conquer JA, Grinstein S, Cruz TF. Interleukin-1β induction of c-fos and collagenase expression in articular chondrocytes: involvement of reactive oxygen species. J Cell Biochem. 1998;69:19–29.CrossRefPubMedGoogle Scholar
  37. 37.
    Haddad JJ. Antioxidant and prooxidant mechanisms in the regulation of redox-sensitive transcription factors. Cell Signal. 2002;13:879–97.CrossRefGoogle Scholar
  38. 38.
    Allen RG, Tresini M. Oxidative stress and gene regulation. Free Radic Biol Med. 2000;28:463–99.CrossRefPubMedGoogle Scholar
  39. 39.
    Zákány R, Szíjgyártó Z, Matta C, Juhász T, Csortos C, Szucs K, et al. Hydrogen peroxide inhibits formation of cartilage in chicken micromass cultures and decreases the activity of calcineurin: implication of ERK1/2 and Sox9 pathways. Exp Cell Res. 2005;15:190–9.CrossRefGoogle Scholar
  40. 40.
    Lo YYC, Cruz TF. Involvement of reactive oxygen species in cytokine and growth factor induction of c-fos expression in chondrocytes. J Biol Chem. 1995;20:11727–30.Google Scholar

Copyright information

© Springer Basel AG 2010

Authors and Affiliations

  • M. P. Chen
    • 1
  • S. H. Yang
    • 2
  • C. H. Chou
    • 1
  • K. C. Yang
    • 1
  • C. C. Wu
    • 1
    • 3
  • Y. H. Cheng
    • 1
  • Feng-Huei Lin
    • 1
  1. 1.Institute of Biomedical Engineering, College of Engineering and College of MedicineNational Taiwan UniversityTaipeiTaiwan
  2. 2.National Taiwan University HospitalTaipeiTaiwan
  3. 3.Department of OrthopedicsEn Chu Kong HospitalTaipei HsienTaiwan

Personalised recommendations