Inflammation Research

, Volume 59, Issue 7, pp 571–578

Effects of alpha 1-antitrypsin on endotoxin-induced lung inflammation in vivo

  • Devipriya Subramaniyam
  • Chad Steele
  • Thomas Köhnlein
  • Tobias Welte
  • Olof Grip
  • Sadis Matalon
  • Sabina Janciauskiene
Original Research Paper

Abstract

Objective and design

Previous in vitro experiments demonstrated that acute-phase protein, alpha 1-antitrypsin (AAT), could act either as an enhancer or as a suppressor of lipopolysaccharide (LPS)-induced cell activation depending on treatment time. Here we investigate how AAT regulates inflammatory responses in the short term when administrated post LPS challenge.

Methods

Similar experimental setup was used both in vitro and in vivo: human monocytes and neutrophils were stimulated with LPS for 2 h followed by AAT for a total time of 4 h, and C57BL/6 mice were treated intranasally with LPS and 2 h later with AAT and sacrificed after 4 h. Bronchial lavage (BAL) and lung homogenates were analyzed using bio-plex cytokine assay. BAL cell counts were assessed.

Results

Within 4 h, AAT enhanced LPS-induced tumor necrosis factor-alpha (TNFα), interleukin (IL)-6, and IL-8 release from monocytes and neutrophils. Mice challenged for 4 h with LPS followed by AAT at 2 h showed no changes in BAL cell counts and higher levels of almost all measured cytokines, specifically RANTES in BAL and IL-12, IL-13, granulocyte colony-stimulating factor (G-CSF), granulocyte macrophage colony-stimulating factor (GM-CSF), and IL-10 levels in lung homogenates, than in mice treated with LPS only.

Conclusion

Within the short term, AAT enhances the magnitude of LPS-induced specific cytokine/chemokine production, which may play an important role in amplification and resolution of acute-phase inflammatory reactions in vivo.

Keywords

Acute-phase proteins Alpha 1-antitrypsin Endotoxin Cytokines Inflammation 

References

  1. 1.
    Heinrich PC, Castell JV, Andus T. Interleukin-6 and the acute phase response. Biochem J. 1990;265:621–36.PubMedGoogle Scholar
  2. 2.
    Heinrich PC, Horn F, Graeve L, Dittrich E, Kerr I, Muller-Newen G, et al. Interleukin-6 and related cytokines: effect on the acute phase reaction. Z Ernahrungswiss. 1998;37(suppl 1):43–9.PubMedGoogle Scholar
  3. 3.
    Dabbagh K, Laurent GJ, Shock A, Leoni P, Papakrivopoulou J, Chambers RC. Alpha-1-antitrypsin stimulates fibroblast proliferation and procollagen production and activates classical MAP kinase signalling pathways. J Cell Physiol. 2001;186:73–81.CrossRefPubMedGoogle Scholar
  4. 4.
    Janciauskiene S, Zelvyte I, Jansson L, Stevens T. Divergent effects of alpha1-antitrypsin on neutrophil activation, in vitro. Biochem Biophys Res Commun. 2004;315:288–96.CrossRefPubMedGoogle Scholar
  5. 5.
    Tilg H, Vannier E, Vachino G, Dinarello CA, Mier JW. Antiinflammatory properties of hepatic acute phase proteins: preferential induction of interleukin 1 (IL-1) receptor antagonist over IL-1 beta synthesis by human peripheral blood mononuclear cells. J Exp Med. 1993;178:1629–36.CrossRefPubMedGoogle Scholar
  6. 6.
    Libert C, Van Molle W, Brouckaert P, Fiers W. Alpha1-antitrypsin inhibits the lethal response to TNF in mice. J Immunol. 1996;157:5126–9.PubMedGoogle Scholar
  7. 7.
    Churg A, Dai J, Zay K, Karsan A, Hendricks R, Yee C, et al. Alpha-1-antitrypsin and a broad spectrum metalloprotease inhibitor, RS113456, have similar acute anti-inflammatory effects. Lab Invest. 2001;81:1119–31.PubMedGoogle Scholar
  8. 8.
    Dhami R, Gilks B, Xie C, Zay K, Wright JL, Churg A. Acute cigarette smoke-induced connective tissue breakdown is mediated by neutrophils and prevented by alpha1-antitrypsin. Am J Respir Cell Mol Biol. 2000;22:244–52.PubMedGoogle Scholar
  9. 9.
    Cantin AM, Woods DE. Aerosolized prolastin suppresses bacterial proliferation in a model of chronic Pseudomonas aeruginosa lung infection. Am J Respir Crit Care Med. 1999;160:1130–5.PubMedGoogle Scholar
  10. 10.
    Griese M, Latzin P, Kappler M, Weckerle K, Heinzlmaier T, Bernhardt T, et al. Alpha1-antitrypsin inhalation reduces airway inflammation in cystic fibrosis patients. Eur Respir J. 2007;29:240–50.CrossRefPubMedGoogle Scholar
  11. 11.
    Lewis EC, Shapiro L, Bowers OJ, Dinarello CA. Alpha1-antitrypsin monotherapy prolongs islet allograft survival in mice. Proc Natl Acad Sci USA. 2005;102:12153–8.CrossRefPubMedGoogle Scholar
  12. 12.
    Ballou SP, Lozanski G. Induction of inflammatory cytokine release from cultured human monocytes by C-reactive protein. Cytokine. 1992;4:361–8.CrossRefPubMedGoogle Scholar
  13. 13.
    Cermak J, Key NS, Bach RR, Balla J, Jacob HS, Vercellotti GM. C-reactive protein induces human peripheral blood monocytes to synthesize tissue factor. Blood. 1993;82:513–20.PubMedGoogle Scholar
  14. 14.
    Zouki C, Beauchamp M, Baron C, Filep JG. Prevention of In vitro neutrophil adhesion to endothelial cells through shedding of L-selectin by C-reactive protein and peptides derived from C-reactive protein. J Clin Invest. 1997;100:522–9.CrossRefPubMedGoogle Scholar
  15. 15.
    Dobrinich R, Spagnuolo PJ. Binding of C-reactive protein to human neutrophils. Inhibition of respiratory burst activity. Arthritis Rheum. 1991;34:1031–8.CrossRefPubMedGoogle Scholar
  16. 16.
    Pue CA, Mortensen RF, Marsh CB, Pope HA, Wewers MD. Acute phase levels of reactive protein enhance IL-1 beta and IL-1ra production by human blood monocytes but inhibit IL-1 beta and IL-1ra production by alveolar macrophages. J Immunol. 1996;156:1594–600.PubMedGoogle Scholar
  17. 17.
    Boutten A, Dehoux M, Deschenes M, Rouzeau JD, Bories PN, Durand G. Alpha 1-acid glycoprotein potentiates lipopolysaccharide-induced secretion of interleukin-1 beta, interleukin-6 and tumor necrosis factor-alpha by human monocytes and alveolar and peritoneal macrophages. Eur J Immunol. 1992;22:2687–95.CrossRefPubMedGoogle Scholar
  18. 18.
    Su SJ, Yang BC, Wang YS, Yeh TM. Alpha 1-acid glycoprotein-induced tumor necrosis factor-alpha secretion of human monocytes is enhanced by serum binding proteins and depends on protein tyrosine kinase activation. Immunopharmacology. 1999;41:21–9.CrossRefPubMedGoogle Scholar
  19. 19.
    Costello MJ, Gewurz H, Siegel JN. Inhibition of neutrophil activation by alpha1-acid glycoprotein. Clin Exp Immunol. 1984;55:465–72.PubMedGoogle Scholar
  20. 20.
    Laine E, Couderc R, Roch-Arveiller M, Vasson MP, Giroud JP, Raichvarg D. Modulation of human polymorphonuclear neutrophil functions by alpha 1-acid glycoprotein. Inflammation. 1990;14:1–9.CrossRefPubMedGoogle Scholar
  21. 21.
    Hochepied T, Van Molle W, Berger FG, Baumann H, Libert C. Involvement of the acute phase protein alpha 1-acid glycoprotein in nonspecific resistance to a lethal gram-negative infection. J Biol Chem. 2000;275:14903–9.CrossRefPubMedGoogle Scholar
  22. 22.
    de Vries B, Walter SJ, Wolfs TG, Hochepied T, Rabina J, Heeringa P, et al. Exogenous alpha-1-acid glycoprotein protects against renal ischemia-reperfusion injury by inhibition of inflammation and apoptosis. Transplantation. 2004;78:1116–24.CrossRefPubMedGoogle Scholar
  23. 23.
    Sorensson J, Ohlson M, Bjornson A, Haraldsson B. Orosomucoid has a cAMP-dependent effect on human endothelial cells and inhibits the action of histamine. Am J Physiol Heart Circ Physiol. 2000;278:H1725–31.PubMedGoogle Scholar
  24. 24.
    Janciauskiene SM, Nita IM, Stevens T. Alpha1-antitrypsin, old dog, new tricks. Alpha1-antitrypsin exerts in vitro anti-inflammatory activity in human monocytes by elevating cAMP. J Biol Chem. 2007;282:8573–82.CrossRefPubMedGoogle Scholar
  25. 25.
    Chignard M, Balloy V. Neutrophil recruitment and increased permeability during acute lung injury induced by lipopolysaccharide. Am J Physiol Lung Cell Mol Physiol. 2000;279:L1083–90.PubMedGoogle Scholar
  26. 26.
    Southam DS, Dolovich M, O’Byrne PM, Inman MD. Distribution of intranasal instillations in mice: effects of volume, time, body position, and anesthesia. Am J Physiol Lung Cell Mol Physiol. 2002;282:L833–9.PubMedGoogle Scholar
  27. 27.
    Kushner I. Regulation of the acute phase response by cytokines. Perspect Biol Med. 1993;36:611–22.PubMedGoogle Scholar
  28. 28.
    Schreiber G, Tsykin A, Aldred AR, Thomas T, Fung WP, Dickson PW, et al. The acute phase response in the rodent. Ann N Y Acad Sci. 1989;557:61–85. discussion 85-6.PubMedCrossRefGoogle Scholar
  29. 29.
    Heuertz RM, Piquette CA, Webster RO. Rabbits with elevated serum C-reactive protein exhibit diminished neutrophil infiltration and vascular permeability in C5a-induced alveolitis. Am J Pathol. 1993;142:319–28.PubMedGoogle Scholar
  30. 30.
    Kilpatrick L, McCawley L, Nachiappan V, Greer W, Majumdar S, Korchak HM, et al. Alpha-1-antichymotrypsin inhibits the NADPH oxidase-enzyme complex in phorbol ester-stimulated neutrophil membranes. J Immunol. 1992;149:3059–65.PubMedGoogle Scholar
  31. 31.
    Libert C. Acute phase proteins as protective factors against the toxicity of tumor necrosis factor. Verh K Acad Geneeskd Belg. 1997;59:515–23.PubMedGoogle Scholar
  32. 32.
    Nagai A, Aoshiba K, Ishihara Y, Inano H, Sakamoto K, Yamaguchi E, et al. Administration of alpha 1-proteinase inhibitor ameliorates bleomycin-induced pulmonary fibrosis in hamsters. Am Rev Respir Dis. 1992;145:651–6.PubMedGoogle Scholar
  33. 33.
    Churg A, Wang RD, Xie C, Wright JL. Alpha-1-antitrypsin ameliorates cigarette smoke-induced emphysema in the mouse. Am J Respir Crit Care Med. 2003;168:199–207.CrossRefPubMedGoogle Scholar
  34. 34.
    Nick JA, Young SK, Brown KK, Avdi NJ, Arndt PG, Suratt BT, et al. Role of p38 mitogen-activated protein kinase in a murine model of pulmonary inflammation. J Immunol. 2000;164:2151–9.PubMedGoogle Scholar
  35. 35.
    Nick JA, Young SK, Arndt PG, Lieber JG, Suratt BT, Poch KR, et al. Selective suppression of neutrophil accumulation in ongoing pulmonary inflammation by systemic inhibition of p38 mitogen-activated protein kinase. J Immunol. 2002;169:5260–9.PubMedGoogle Scholar
  36. 36.
    Hill H, Bohnsack J, Morris E, Augustine N, Parker C, Cleary P, et al. Group B streptococci inhibit the chemotactic activity of the fifth component of complement. J Immunol. 1988;141:3551–6.PubMedGoogle Scholar
  37. 37.
    Jagels M, Travis J, Potempa J, Pike R, Hugli T. Proteolytic inactivation of the leukocyte C5a receptor by proteinases derived from Porphyromonas gingivalis. Infect Immun. 1996;64:1984–91.PubMedGoogle Scholar
  38. 38.
    Rozdzinski E, Jones T, Burnette W, Burroughs M, Tuomanen E. Antiinflammatory effects in experimental meningitis of prokaryotic peptides that mimic selectins. J Infect Dis. 1993;168:1422–8.PubMedGoogle Scholar
  39. 39.
    Goldman D, Chang F, Gifford L, Goetzl E, Bourne H. Pertussis toxin inhibition of chemotactic factor-induced calcium mobilization and function in human polymorphonuclear leukocytes. J Exp Med. 1985;162:145–56.CrossRefPubMedGoogle Scholar
  40. 40.
    Veldkamp K, Heezius H, Verhoef J, van Strijp J, van Kessel K. Modulation of neutrophil chemokine receptors by Staphylococcus aureus supernate. Infect Immun. 2000;68:5908–13.CrossRefPubMedGoogle Scholar
  41. 41.
    Aoshiba K, Nagai A, Ishihara Y, Kagawa J, Takizawa T. Effects of alpha 1-proteinase inhibitor on chemotaxis and chemokinesis of polymorphonuclear leukocytes: its possible role in regulating polymorphonuclear leukocyte recruitment in human subjects. J Lab Clin Med. 1993;122:333–40.PubMedGoogle Scholar
  42. 42.
    Stockley RA, Bayley D, Hill SL, Hill AT, Crooks S, Campbell EJ. Assessment of airway neutrophils by sputum colour: correlation with airways inflammation. Thorax. 2001;56(5):366–72.CrossRefPubMedGoogle Scholar
  43. 43.
    Zuany-Amorim C, Haile S, Leduc D, Dumarey C, Huerre M, Vargaftig BB, et al. Interleukin-10 inhibits antigen-induced cellular recruitment into the airways of sensitized mice. J Clin Invest. 1995;95:2644–51.CrossRefPubMedGoogle Scholar
  44. 44.
    Gavett SH, O’Hearn DJ, Li X, Huang SK, Finkelman FD, Wills-Karp M. Interleukin 12 inhibits antigen-induced airway hyperresponsiveness, inflammation, and Th2 cytokine expression in mice. J Exp Med. 1995;182:1527–36.CrossRefPubMedGoogle Scholar
  45. 45.
    Kobbe P, Schmidt J, Stoffels B, Chanthaphavong RS, Bauer AJ, Pape HC. IL-10 administration attenuates pulmonary neutrophil infiltration and alters pulmonary iNOS activation following hemorrhagic shock. Inflamm Res. 2009;58:170–4.CrossRefPubMedGoogle Scholar
  46. 46.
    Sun L, Guo RF, Newstead MW, Standiford TJ, Macariola DR, Shanley TP. Effect of IL-10 on neutrophil recruitment and survival after Pseudomonas aeruginosa challenge. Am J Respir Cell Mol Biol. 2008;41(1):76–84.CrossRefPubMedGoogle Scholar
  47. 47.
    Cavusoglu E, Eng C, Chopra V, Clark LT, Pinsky DJ, Marmur JD. Low plasma RANTES levels are an independent predictor of cardiac mortality in patients referred for coronary angiography. Arterioscler Thromb Vasc Biol. 2007;27:929–35.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Basel AG 2010

Authors and Affiliations

  • Devipriya Subramaniyam
    • 1
  • Chad Steele
    • 3
  • Thomas Köhnlein
    • 1
  • Tobias Welte
    • 1
  • Olof Grip
    • 2
  • Sadis Matalon
    • 4
  • Sabina Janciauskiene
    • 1
  1. 1.Department of Respiratory MedicineHannover Medical SchoolHannoverGermany
  2. 2.Department of GastroenterologyMalmö University HospitalMalmöSweden
  3. 3.Department of Medicine, Center of Free Radical Biology, School of MedicineUniversity of Alabama at BirminghamBirminghamUSA
  4. 4.Department of Anesthesiology, Physiology and Environmental Health Sciences, Center of Free Radical Biology, School of MedicineUniversity of Alabama at BirminghamBirminghamUSA

Personalised recommendations