Inflammation Research

, Volume 59, Issue 5, pp 391–398 | Cite as

The effects of bilastine compared with cetirizine, fexofenadine, and placebo on allergen-induced nasal and ocular symptoms in patients exposed to aeroallergen in the Vienna Challenge Chamber

  • Friedrich Horak
  • Petra Zieglmayer
  • René Zieglmayer
  • Patrick Lemell
Original Research Paper


Objective and design

This double-blind cross-over study compared the potential of bilastine, cetirizine, and fexofenadine to relieve the symptoms of allergic rhinitis.

Subjects and methods

Seventy-five allergic volunteers were challenged with grass pollen in the Vienna Challenge Chamber (VCC) on two consecutive days of allergen provocation; 6 h on day 1 and 4 h day 2. Bilastine 20 mg, cetirizine 10 mg, fexofenadine 120 mg, or placebo were taken orally 2 h after the start of provocation on day 1 only. Total nasal symptom scores, the global symptom scores, nasal secretions, and eye symptoms were assessed on both day 1 and day 2.

Results and conclusions

Bilastine had a rapid onset of action, within 1 h, and a long duration of action, greater than 26 h. Cetirizine was similar. Fexofenadine was similar on day 1 but less effective on day 2, indicating a shorter duration of action. Bilastine, like cetirizine and fexofenadine, was safe and well tolerated in this study.


Bilastine Cetirizine Fexofenadine Allergic rhinitis Vienna Challenge Chamber 



The authors thank FAES FARMA, Bilbao, Spain, for financial assistance.


  1. 1.
    Asher MI, Montefort S, Bjorksten B, Lai CK, Strachan DP, Weiland SK, et al. Worldwide time trends in the prevalence of symptoms of asthma, allergic rhinoconjunctivitis, and eczema in childhood: ISAAC phases one and three repeat multicountry cross-sectional surveys. Lancet. 2006;368(9537):733–43.CrossRefPubMedGoogle Scholar
  2. 2.
    Bousquet J, Khaltaev N, Cruz AA, Denburg J, Fokkens WJ, Togias A, et al. Allergic Rhinitis and its Impact on Asthma (ARIA) 2008 update [in collaboration with the World Health Organization, GA(2)LEN and AllerGen]. Allergy. 2008;63(Suppl 86):8–160.CrossRefPubMedGoogle Scholar
  3. 3.
    Blaiss MS. Important aspects in management of allergic rhinitis: compliance, cost, and quality of life. Allergy Asthma Proc. 2003;24:231–8.PubMedGoogle Scholar
  4. 4.
    Bousquet J, Demarteau N, Mullol J, van den Akker-van Marle ME, Van Ganse E, Bachert C. Costs associated with persistent allergic rhinitis are reduced by levocetirizine. Allergy. 2005;60:788–94.CrossRefPubMedGoogle Scholar
  5. 5.
    Leurs R, Church MK, Taglialatela M. H1-antihistamines: inverse agonism, anti-inflammatory actions and cardiac effects. Clin Exp Allergy. 2002;32:489–98.CrossRefPubMedGoogle Scholar
  6. 6.
    Casale TB, Blaiss MS, Gelfand E, Gilmore T, Harvey PD, Hindmarch I, et al. First do no harm: managing antihistamine impairment in patients with allergic rhinitis. J Allergy Clin Immunol. 2003;111:S835–42.CrossRefPubMedGoogle Scholar
  7. 7.
    Meltzer EO, Grant JA. Impact of cetirizine on the burden of allergic rhinitis. Ann Allergy Asthma Immunol. 1999;83(5):455–63.CrossRefPubMedGoogle Scholar
  8. 8.
    Markham A, Wagstaff AJ. Fexofenadine. Drugs. 1998;55:269–74.CrossRefPubMedGoogle Scholar
  9. 9.
    Corcostegui R, Labeaga L, Innerarity A, Berisa A, Orjales A. Preclinical pharmacology of bilastine, a new selective histamine H1 receptor antagonist: receptor selectivity and in vitro antihistaminic activity. Drugs R D. 2005;6:371–84.CrossRefPubMedGoogle Scholar
  10. 10.
    Sologuren A, Valiente R. Relationship of dose to inhibition of wheal and flare for 5 doses bilastine and 10 mg cetirizine. In: Proceedings of the 36th ACCP Annual Meeting, San Francisco, CA, 9–11 September; 2007.Google Scholar
  11. 11.
    Audicana MT. A double blind, randomized, dose ranging trial in four parallel groups of 10, 20 and 30 mg bilastine once daily vs placebo in the symptomatic treatment of chronic idiopatic urticaria. In: Proceedings of SEIAC, Santander (Spain); 2007.Google Scholar
  12. 12.
    Alison M, Benoit T, Sologuren A. Lack of significant effect of bilastine on ventricular repolarization. A throrough QT/QTc study. In: Proceedings of the EAACI Congress, Barcelona (Spain), 7–11 June; 2008.Google Scholar
  13. 13.
    Garcia-Gea C, Martinez-Colomer J, Antonijoan RM, Valiente R, Barbanoj MJ. Comparison of peripheral and central effects of single and repeated oral dose administrations of bilastine, a new H1 antihistamine: a dose-range study in healthy volunteers with hydroxyzine and placebo as control treatments. J Clin Psychopharmacol. 2008;28:675–85.CrossRefPubMedGoogle Scholar
  14. 14.
    Gonzalo A, Lucero ML, Orjales A. Early identification of the processes involved in bilastine bioavailability in rats. In: Proceedings of 10th European Regional ISSX Meeting, Vienna, Austria, 18–21 May; 2008.Google Scholar
  15. 15.
    Horak F, Jäger S. Wiener Provokations-Kammer (Vienna Challenge Chamber): eine neue Methode des Allergenexpositionstests. Wiener klin Wochenschr. 1987;99:509–10.Google Scholar
  16. 16.
    Horak F, Stübner UP, Zieglmayer R, Kavina A, De Vos C, Burtin B, et al. Controlled comparison of the efficacy and safety of cetirizine 10 mg o.d. and fexofenadine 120 mg o.d. in reducing symptoms of seasonal allergic rhinitis. Int Arch Allergy Immunol. 2001;125:73–9.CrossRefPubMedGoogle Scholar
  17. 17.
    Horak F, Zieglmayer PU, Zieglmayer R, Kavina A, Lemell P. Levocetirizine has a longer duration of action on improving total nasal symptoms score than fexofenadine after single administration. Br J Clin Pharmacol. 2005;60:24–31.CrossRefPubMedGoogle Scholar
  18. 18.
    Stuebner P, Zieglmayer R, Horak F. A direct comparison of the efficacy of antihistamines in SAR and PAR: randomised, placebo-controlled studies with levocetirizine and loratadine using an environmental exposure unit—the Vienna Challenge Chamber (VCC). Curr Med Res Opin. 2004;20:891–902.CrossRefGoogle Scholar
  19. 19.
    Stuebner P, Horak F, Zieglmayer R, Arnaiz E, Leuratti C, Perez I, et al. Effects of rupatadine vs placebo on allergen-induced symptoms in patients exposed to aeroallergens in the Vienna Challenge Chamber. Ann Allergy Asthma Immunol. 2006;96:37–44.CrossRefPubMedGoogle Scholar
  20. 20.
    Canonica GW, Bousquet J, Van HG, Bachert C, Durham SR, Klimek L, et al. Levocetirizine improves health-related quality of life and health status in persistent allergic rhinitis. Respir Med. 2006;100:1706–15.CrossRefGoogle Scholar
  21. 21.
    Horak F, Stübner UP, Zieglmayer R, Harris AG. Effect of desloratadine versus placebo on nasal airflow and subjective measures of nasal obstruction in subjects with grass pollen-induced allergic rhinitis in an allergen-exposure unit. J Allergy Clin Immunol. 2002;109:956–61.CrossRefPubMedGoogle Scholar
  22. 22.
    Horak F, Stübner UP. Decongestant activity of desloratadine in controlled-allergen-exposure trials. Clin Drug Invest. 2002;22(Suppl 2):13–20.CrossRefGoogle Scholar
  23. 23.
    Horak F, Stübner UP, Zieglmeyer R, Harris AG. Comparison of the effects of desloratadine 5-mg daily and placebo on nasal airflow and seasonal allergic rhinitis symptoms induced by grass pollen exposure. Allergy. 2003;58:481–5.CrossRefPubMedGoogle Scholar
  24. 24.
    Ciprandi G, Cirillo I, Vizzaccaro A, Milanese M, Tosca MA. Correlation of nasal inflammation and nasal airflow with forced expiratory volume in 1 second in patients with perennial allergic rhinitis and asthma. Ann Allergy Asthma Immunol. 2004;93:575–80.CrossRefPubMedGoogle Scholar
  25. 25.
    Ciprandi G, Cirillo I, Vizzaccaro A, Tosca MA. Levocetirizine improves nasal obstruction and modulates cytokine pattern in patients with seasonal allergic rhinitis: a pilot study. Clin Exp Allergy. 2004;34:958–64.CrossRefPubMedGoogle Scholar
  26. 26.
    Ciprandi G, Cirillo I, Vizzaccaro A, Civardi E, Barberi S, Allen M, et al. Desloratadine and levocetirizine improve nasal symptoms, airflow, and allergic inflammation in patients with perennial allergic rhinitis: a pilot study. Int Immunopharmacol. 2005;5(13–14):1800–8.CrossRefPubMedGoogle Scholar
  27. 27.
    Oswald S, Grube M, Siegmund W, Kroemer HK. Transporter-mediated uptake into cellular compartments. Xenobiotica. 2007;37(10–11):1171–95.CrossRefPubMedGoogle Scholar
  28. 28.
    Tahara H, Kusuhara H, Fuse E, Sugiyama Y. P-glycoprotein plays a major role in the efflux of fexofenadine in the small intestine and blood-brain barrier, but only a limited role in its biliary excretion. Drug Metab Dispos. 2005;33:963–8.CrossRefPubMedGoogle Scholar
  29. 29.
    Matsushima S, Maeda K, Hayashi H, Debori Y, Schinkel AH, Schuetz JD, et al. Involvement of multiple efflux transporters in hepatic disposition of fexofenadine. Mol Pharmacol. 2008;73:1474–83.CrossRefPubMedGoogle Scholar
  30. 30.
    Tian X, Zamek-Gliszczynski MJ, Li J, Bridges AS, Nezasa K, Patel NJ, et al. Multidrug resistance-associated protein 2 is primarily responsible for the biliary excretion of fexofenadine in mice. Drug Metab Dispos. 2008;36:61–4.CrossRefPubMedGoogle Scholar

Copyright information

© Birkhäuser Verlag, Basel/Switzerland 2009

Authors and Affiliations

  • Friedrich Horak
    • 1
  • Petra Zieglmayer
    • 2
  • René Zieglmayer
    • 2
  • Patrick Lemell
    • 2
  1. 1.ENT DepartmentMedical University ViennaViennaAustria
  2. 2.VCC DepartmentAllergy Centre Vienna WestViennaAustria

Personalised recommendations