Inflammation Research

, Volume 58, Issue 10, pp 631–638 | Cite as

Mast cells and eosinophils: the two key effector cells in allergic inflammation

Review

Abstract

The allergic inflammatory response is composed of two main phases—the early and the late. The early phase initiates when an allergen activates the tissue resident mast cell, triggering the release of a variety of granule-stored and newly formed mediators. As the inflammatory response progresses, blood borne inflammatory cells—in particular, eosinophils—are recruited into the inflamed tissue. Eosinophil activation and consequent release and production of several pro-inflammatory mediators results in the late phase reaction. A chronic allergic inflammation always features prominent tissue eosinophilia. In this review, we will discuss the possible channels of communication, both soluble and physical, between mast cells and eosinophils that can occur in the late and chronic stages of allergy. Such interactions, that we have termed “the allergic effector unit”, may modulate the severity and/or duration of the allergic inflammatory reaction.

Keywords

Mast cells Eosinophils Allergic inflammation 

Abbreviations

Ig

Immunoglobulin

SCF

Stem cell factor

PG

Prostaglandin

LT

leukotriene

IL

Interleukin

GM-CSF

Granulocyte-macrophage colony-stimulating factor

TNF-α

Tumor necrosis factor alpha

TGF-β

Transforming growth factor-β

FGF

Fibroblast growth factor

VEGF

Vascular endothelial growth factor

NGF

Nerve growth factor

EPO

Eosinophil peroxidase

MBP

Major basic protein

ECP

Eosinophil cationic protein

EDN

Eosinophil derived neurotoxin

PAF

Platelet activating factor

IFN-γ

Interferon-gamma

MAPK

Mitogen-activated protein kinase

PAR2

Proteinase-activated receptor 2

AP-1

Activator protein-1

MMPs

Metalloproteinases

DNAM-1

DNAX accessory molecule 1

PVR

Poliovirus receptor

LFA-1

Leukocyte function-associated antigen 1

ICAM-1

Intercellular adhesion molecule 1

References

  1. 1.
    Eder W, Ege MJ, von Mutius E. The asthma epidemic. N Engl J Med. 2006;355:2226–35.PubMedCrossRefGoogle Scholar
  2. 2.
    Lawson JA, Senthilselvan A. Asthma epidemiology: has the crisis passed? Curr Opin Pulm Med. 2005;11:79–84.PubMedCrossRefGoogle Scholar
  3. 3.
    Williams CM, Galli SJ. The diverse potential effector and immunoregulatory roles of mast cells in allergic disease. J Allergy Clin Immunol. 2000;105(5):847–59.Google Scholar
  4. 4.
    Galli SJ, Tsai M, Piliponsky AM. The development of allergic inflammation. Nature 2008;454:445–54.PubMedCrossRefGoogle Scholar
  5. 5.
    Bloemen K, Verstraelen S, Van Den Heuvel R, Witters H, Nelissen I, Schoeters G. The allergic cascade: review of the most important molecules in the asthmatic lung. Immunol Lett. 2007;113:6–18.PubMedCrossRefGoogle Scholar
  6. 6.
    Bischoff SC. Role of mast cells in allergic and non-allergic immune responses: comparison of human and murine data. Nat Rev Immunol. 2007;7:93–104.PubMedCrossRefGoogle Scholar
  7. 7.
    Metz M, Grimbaldeston MA, Nakae S, Piliponsky AM, Tsai M, Galli SJ. Mast cells in the promotion and limitation of chronic inflammation. Immunol Rev. 2007;217:304–28.PubMedCrossRefGoogle Scholar
  8. 8.
    Holgate ST. The epidemic of allergy and asthma. Nature 1999;402:B2–4.PubMedCrossRefGoogle Scholar
  9. 9.
    Kay AB. Allergy and allergic diseases. First of two parts. N Engl J Med. 2001;344:30–7.PubMedCrossRefGoogle Scholar
  10. 10.
    Bischof RJ, Snibson KJ, Velden JV, Meeusen EN. Immune response to allergens in sheep sensitized to house dust mite. J Inflamm (Lond). 2008;5:16.CrossRefGoogle Scholar
  11. 11.
    Bachelet I, Levi-Schaffer F, Mekori YA. Mast cells: not only in allergy. Immunol Allergy Clin North Am. 2006;26:407–25.PubMedCrossRefGoogle Scholar
  12. 12.
    Tsai M, Grimbaldeston MA, Yu M, Tam SY, Galli SJ. Using mast cell knock-in mice to analyze the roles of mast cells in allergic responses in vivo. Chem Immunol Allergy. 2005;87:179–97.PubMedCrossRefGoogle Scholar
  13. 13.
    Matsumoto M, Kunimitsu S, Wada K, Ikeda M, Keyama A, Kodama H. Mast cell distribution, activation, and phenotype in xanthoma. J Am Acad Dermatol. 2007;56:1006–12.PubMedCrossRefGoogle Scholar
  14. 14.
    Prussin C, Metcalfe DD. 5. IgE, mast cells, basophils, and eosinophils. J Allergy Clin Immunol. 2006;117:S450–6.PubMedCrossRefGoogle Scholar
  15. 15.
    Roth K, Chen WM, Lin TJ. Positive and negative regulatory mechanisms in high-affinity IgE receptor-mediated mast cell activation. Arch Immunol Ther Exp (Warsz). 2008;56:385–99.CrossRefGoogle Scholar
  16. 16.
    Ryan JJ, Kashyap M, Bailey D, Kennedy S, Speiran K, Brenzovich J, et al. Mast cell homeostasis: a fundamental aspect of allergic disease. Crit Rev Immunol. 2007;27:15–32.PubMedGoogle Scholar
  17. 17.
    Shelburne CP, Ryan JJ. The role of Th2 cytokines in mast cell homeostasis. Immunol Rev. 2001;179:82–93.PubMedCrossRefGoogle Scholar
  18. 18.
    Gelfand EW. Inflammatory mediators in allergic rhinitis. J Allergy Clin Immunol. 2004;114:S135–8.PubMedCrossRefGoogle Scholar
  19. 19.
    Jacobsen EA, Ochkur SI, Lee NA, Lee JJ. Eosinophils and asthma. Curr Allergy Asthma Rep. 2007;7:18–26.PubMedCrossRefGoogle Scholar
  20. 20.
    Rosenberg HF, Phipps S, Foster PS. Eosinophil trafficking in allergy and asthma. J Allergy Clin Immunol. 2007;119:1303–10. quiz 1311–2.PubMedCrossRefGoogle Scholar
  21. 21.
    Rothenberg ME, Hogan SP. The eosinophil. Annu Rev Immunol. 2006;24:147–74.PubMedCrossRefGoogle Scholar
  22. 22.
    Hogan SP. Recent advances in eosinophil biology. Int Arch Allergy Immunol. 2007;143(Suppl 1):3–14.PubMedCrossRefGoogle Scholar
  23. 23.
    Mattes J, Foster PS. Regulation of eosinophil migration and Th2 cell function by IL-5 and eotaxin. Curr Drug Targets Inflamm Allergy. 2003;2:169–74.PubMedCrossRefGoogle Scholar
  24. 24.
    Lopez AF, Begley CG, Williamson DJ, Warren DJ, Vadas MA, Sanderson CJ. Murine eosinophil differentiation factor. An eosinophil-specific colony-stimulating factor with activity for human cells. J Exp Med. 1986;163:1085–99.PubMedCrossRefGoogle Scholar
  25. 25.
    Rothenberg ME, Pomerantz JL, Owen WF Jr, Avraham S, Soberman RJ, Austen KF, et al. Characterization of a human eosinophil proteoglycan, and augmentation of its biosynthesis and size by interleukin 3, interleukin 5, and granulocyte/macrophage colony stimulating factor. J Biol Chem. 1988;263:13901–8.PubMedGoogle Scholar
  26. 26.
    Nerlov C, Graf T. PU.1 induces myeloid lineage commitment in multipotent hematopoietic progenitors. Genes Dev. 1998;12:2403–12.PubMedCrossRefGoogle Scholar
  27. 27.
    Eliashar R, Levi-Schaffer F. The role of the eosinophil in nasal diseases. Curr Opin Otolaryngol Head Neck Surg. 2005;13:171–5.PubMedCrossRefGoogle Scholar
  28. 28.
    Temkin V, Kantor B, Weg V, Hartman ML, Levi-Schaffer F. Tryptase activates the mitogen-activated protein kinase/activator protein-1 pathway in human peripheral blood eosinophils, causing cytokine production and release. J Immunol. 2002;169:2662–9.PubMedGoogle Scholar
  29. 29.
    Adamko D, Odemuyiwa SO, Moqbel R. The eosinophil as a therapeutic target in asthma: beginning of the end, or end of the beginning? Curr Opin Pharmacol. 2003;3:227–32.PubMedCrossRefGoogle Scholar
  30. 30.
    El Gazzar M, El Mezayen R, Nicolls MR, Marecki JC, Dreskin SC. Downregulation of leukotriene biosynthesis by thymoquinone attenuates airway inflammation in a mouse model of allergic asthma. Biochim Biophys Acta. 2006;1760:1088–95.PubMedGoogle Scholar
  31. 31.
    Ohnishi H, Miyahara N, Gelfand EW. The role of leukotriene B(4) in allergic diseases. Allergol Int. 2008;57.Google Scholar
  32. 32.
    Landgraf MA, Landgraf RG, Carvalho MH, Fortes ZB. Modulation of lung allergic inflammation and malnutrition. Neuroimmunomodulation 2008;15:194–206.PubMedCrossRefGoogle Scholar
  33. 33.
    Hartman M, Piliponsky AM, Temkin V, Levi-Schaffer F. Human peripheral blood eosinophils express stem cell factor. Blood 2001;97:1086–91.PubMedCrossRefGoogle Scholar
  34. 34.
    O’Donnell MC, Ackerman SJ, Gleich GJ, Thomas LL. Activation of basophil and mast cell histamine release by eosinophil granule major basic protein. J Exp Med. 1983;157:1981–91.PubMedCrossRefGoogle Scholar
  35. 35.
    Piliponsky AM, Gleich GJ, Nagler A, Bar I, Levi-Schaffer F. Non-IgE-dependent activation of human lung- and cord blood-derived mast cells is induced by eosinophil major basic protein and modulated by the membrane form of stem cell factor. Blood 2003;101:1898–904.PubMedCrossRefGoogle Scholar
  36. 36.
    Piliponsky AM, Pickholtz D, Gleich GJ, Levi-Schaffer F. Human eosinophils induce histamine release from antigen-activated rat peritoneal mast cells: a possible role for mast cells in late-phase allergic reactions. J Allergy Clin Immunol. 2001;107:993–1000.PubMedCrossRefGoogle Scholar
  37. 37.
    Puxeddu I, Ribatti D, Crivellato E, Levi-Schaffer F. Mast cells and eosinophils: a novel link between inflammation and angiogenesis in allergic diseases. J Allergy Clin Immunol. 2005;116:531–6.PubMedCrossRefGoogle Scholar
  38. 38.
    Shakoory B, Fitzgerald SM, Lee SA, Chi DS, Krishnaswamy G. The role of human mast cell-derived cytokines in eosinophil biology. J Interferon Cytokine Res. 2004;24:271–81.PubMedCrossRefGoogle Scholar
  39. 39.
    Bischoff SC, Dahinden CA. c-kit ligand: a unique potentiator of mediator release by human lung mast cells. J Exp Med. 1992;175:237–44.PubMedCrossRefGoogle Scholar
  40. 40.
    Dastych J, Metcalfe DD. Stem cell factor induces mast cell adhesion to fibronectin. J Immunol. 1994;152:213–9.PubMedGoogle Scholar
  41. 41.
    Meininger CJ, Yano H, Rottapel R, Bernstein A, Zsebo KM, Zetter BR. The c-kit receptor ligand functions as a mast cell chemoattractant. Blood 1992;79:958–63.PubMedGoogle Scholar
  42. 42.
    Hermes B, Welker P, Feldmann-Boddeker I, Kruger-Krasagakis S, Hartmann K, Zuberbier T, et al. Expression of mast cell growth modulating and chemotactic factors and their receptors in human cutaneous scars. J Invest Dermatol. 2001;116:387–93.PubMedCrossRefGoogle Scholar
  43. 43.
    Tam SY, Tsai M, Yamaguchi M, Yano K, Butterfield JH, Galli SJ. Expression of functional TrkA receptor tyrosine kinase in the HMC-1 human mast cell line and in human mast cells. Blood 1997;90:1807–20.PubMedGoogle Scholar
  44. 44.
    Zheutlin LM, Ackerman SJ, Gleich GJ, Thomas LL. Stimulation of basophil and rat mast cell histamine release by eosinophil granule-derived cationic proteins. J Immunol. 1984;133:2180–5.PubMedGoogle Scholar
  45. 45.
    Patella V, de Crescenzo G, Marino I, Genovese A, Adt M, Gleich GJ, et al. Eosinophil granule proteins activate human heart mast cells. J Immunol. 1996;157:1219–25.PubMedGoogle Scholar
  46. 46.
    Ellyard JI, Simson L, Bezos A, Johnston K, Freeman C, Parish CR. Eotaxin selectively binds heparin. An interaction that protects eotaxin from proteolysis and potentiates chemotactic activity in vivo. J Biol Chem. 2007;282:15238–47.PubMedCrossRefGoogle Scholar
  47. 47.
    Temkin V, Aingorn H, Puxeddu I, Goldshmidt O, Zcharia E, Gleich GJ, et al. Eosinophil major basic protein: first identified natural heparanase-inhibiting protein. J Allergy Clin Immunol. 2004;113:703–9.PubMedCrossRefGoogle Scholar
  48. 48.
    Levi-Schaffer F, Temkin V, Malamud V, Feld S, Zilberman Y. Mast cells enhance eosinophil survival in vitro: role of TNF-alpha and granulocyte-macrophage colony-stimulating factor. J Immunol. 1998;160:5554–62.PubMedGoogle Scholar
  49. 49.
    Hoenstein R, Admon D, Solomon A, Norris A, Moqbel R, Levi-Schaffer F. Interleukin-2 activates human peripheral blood eosinophils. Cell Immunol. 2001;210:116–24.PubMedCrossRefGoogle Scholar
  50. 50.
    Temkin V, Levi-Schaffer F. Mechanism of tumour necrosis factor alpha mediated eosinophil survival. Cytokine 2001;15:20–6.PubMedCrossRefGoogle Scholar
  51. 51.
    Temkin V, Pickholtz D, Levi-Schaffer F. Tumor necrosis factors in a murine model of allergic peritonitis: effects on eosinophil accumulation and inflammatory mediators’ release. Cytokine 2003;24:74–80.PubMedCrossRefGoogle Scholar
  52. 52.
    Liu LY, Bates ME, Jarjour NN, Busse WW, Bertics PJ, Kelly EA. Generation of Th1 and Th2 chemokines by human eosinophils: evidence for a critical role of TNF-alpha. J Immunol. 2007;179:4840–8.PubMedGoogle Scholar
  53. 53.
    Malaviya R, Ikeda T, Ross E, Abraham SN. Mast cell modulation of neutrophil influx and bacterial clearance at sites of infection through TNF-alpha. Nature 1996;381:77–80.PubMedCrossRefGoogle Scholar
  54. 54.
    Takafuji S, Tadokoro K, Ito K, Nakagawa T. Release of granule proteins from human eosinophils stimulated with mast-cell mediators. Allergy 1998;53:951–6.PubMedCrossRefGoogle Scholar
  55. 55.
    Wong CK, Ng SS, Lun SW, Cao J, Lam CW. Signalling mechanisms regulating the activation of human eosinophils by mast-cell-derived chymase: implications for mast cell-eosinophil interaction in allergic inflammation. Immunology 2009;126(4):579–87.Google Scholar
  56. 56.
    Vliagoftis H, Lacy P, Luy B, Adamko D, Hollenberg M, Befus D, et al. Mast cell tryptase activates peripheral blood eosinophils to release granule-associated enzymes. Int Arch Allergy Immunol. 2004;135:196–204.PubMedCrossRefGoogle Scholar
  57. 57.
    Boyce JA. Mast cells and eicosanoid mediators: a system of reciprocal paracrine and autocrine regulation. Immunol Rev. 2007;217:168–85.PubMedCrossRefGoogle Scholar
  58. 58.
    Saban MR, Saban R, Bjorling D, Haak-Frendscho M. Involvement of leukotrienes, TNF-alpha, and the LFA-1/ICAM-1 interaction in substance P-induced granulocyte infiltration. J Leukoc Biol. 1997;61:445–51.PubMedGoogle Scholar
  59. 59.
    Schain F, Tryselius Y, Sjoberg J, Porwit A, Backman L, Malec M, et al. Evidence for a pathophysiological role of cysteinyl leukotrienes in classical Hodgkin lymphoma. Int J Cancer. 2008;123:2285–93.PubMedCrossRefGoogle Scholar
  60. 60.
    Laitinen LA, Laitinen A, Haahtela T, Vilkka V, Spur BW, Lee TH. Leukotriene E4 and granulocytic infiltration into asthmatic airways. Lancet 1993;341:989–90.PubMedCrossRefGoogle Scholar
  61. 61.
    Sehmi R, Wardlaw AJ, Cromwell O, Kurihara K, Waltmann P, Kay AB. Interleukin-5 selectively enhances the chemotactic response of eosinophils obtained from normal but not eosinophilic subjects. Blood 1992;79:2952–9.PubMedGoogle Scholar
  62. 62.
    Bandeira-Melo C, Weller PF. Eosinophils and cysteinyl leukotrienes. Prostaglandins Leukot Essent Fatty Acids. 2003;69:135–43.PubMedCrossRefGoogle Scholar
  63. 63.
    Bandeira-Melo C, Bozza PT, Weller PF. The cellular biology of eosinophil eicosanoid formation and function. J Allergy Clin Immunol. 2002;109:393–400.PubMedCrossRefGoogle Scholar
  64. 64.
    Weller PF. Lipid, peptide and cytokine mediators elaborated by eosinophils. In: Smith JH, Cook RM, editors. Immunopharmacology of eosinophils. The Handbook of Immunopharmacology. London: Academic Press; 1993. p. 25–42.Google Scholar
  65. 65.
    Kaneko I, Suzuki K, Matsuo K, Kumagai H, Owada Y, Noguchi N, et al. Cysteinyl leukotrienes enhance the degranulation of bone marrow-derived mast cells through the autocrine mechanism. Tohoku J Exp Med. 2009;217:185–91.PubMedCrossRefGoogle Scholar
  66. 66.
    Bandeira-Melo C, Woods LJ, Phoofolo M, Weller PF. Intracrine cysteinyl leukotriene receptor-mediated signaling of eosinophil vesicular transport-mediated interleukin-4 secretion. J Exp Med. 2002;196:841–50.PubMedCrossRefGoogle Scholar
  67. 67.
    Grakoui A, Bromley SK, Sumen C, Davis MM, Shaw AS, Allen PM, et al. The immunological synapse: a molecular machine controlling T cell activation. Science 1999;285:221–7.PubMedCrossRefGoogle Scholar
  68. 68.
    Monks CR, Freiberg BA, Kupfer H, Sciaky N, Kupfer A. Three-dimensional segregation of supramolecular activation clusters in T cells. Nature 1998;395:82–6.PubMedCrossRefGoogle Scholar
  69. 69.
    Kashiwakura J, Yokoi H, Saito H, Okayama Y. T cell proliferation by direct cross-talk between OX40 ligand on human mast cells and OX40 on human T cells: comparison of gene expression profiles between human tonsillar and lung-cultured mast cells. J Immunol. 2004;173:5247–57.PubMedGoogle Scholar
  70. 70.
    Nelson CM, Chen CS. Cell-cell signaling by direct contact increases cell proliferation via a PI3 K-dependent signal. FEBS Lett. 2002;514:238–42.PubMedCrossRefGoogle Scholar
  71. 71.
    Dayer JM, Burger D. Cytokines and direct cell contact in synovitis: relevance to therapeutic intervention. Arthritis Res. 1999;1:17–20.PubMedCrossRefGoogle Scholar
  72. 72.
    Malaviya R, Gao Z, Thankavel K, van der Merwe PA, Abraham SN. The mast cell tumor necrosis factor alpha response to FimH-expressing Escherichia coli is mediated by the glycosylphosphatidylinositol-anchored molecule CD48. Proc Natl Acad Sci USA. 1999;96:8110–5.PubMedCrossRefGoogle Scholar
  73. 73.
    Brill A, Baram D, Sela U, Salamon P, Mekori YA, Hershkoviz R. Induction of mast cell interactions with blood vessel wall components by direct contact with intact T cells or T cell membranes in vitro. Clin Exp Allergy. 2004;34:1725–31.PubMedCrossRefGoogle Scholar
  74. 74.
    Inamura N, Mekori YA, Bhattacharyya SP, Bianchine PJ, Metcalfe DD. Induction and enhancement of Fc(epsilon)RI-dependent mast cell degranulation following coculture with activated T cells: dependency on ICAM-1- and leukocyte function-associated antigen (LFA)-1-mediated heterotypic aggregation. J Immunol. 1998;160:4026–33.PubMedGoogle Scholar
  75. 75.
    Salamon P, Shoham NG, Gavrieli R, Wolach B, Mekori YA. Human mast cells release Interleukin-8 and induce neutrophil chemotaxis on contact with activated T cells. Allergy 2005;60:1316–9.PubMedCrossRefGoogle Scholar
  76. 76.
    Salamon P, Shoham NG, Puxeddu I, Paitan Y, Levi-Schaffer F, Mekori YA. Human mast cells release oncostatin M on contact with activated T cells: possible biologic relevance. J Allergy Clin Immunol. 2008;121:448–455. e5.PubMedCrossRefGoogle Scholar
  77. 77.
    Stopfer P, Mannel DN, Hehlgans T. Lymphotoxin-beta receptor activation by activated T cells induces cytokine release from mouse bone marrow-derived mast cells. J Immunol. 2004;172:7459–65.PubMedGoogle Scholar
  78. 78.
    Caruso RA, Fedele F, Zuccala V, Fracassi MG, Venuti A. Mast cell and eosinophil interaction in gastric carcinomas: ultrastructural observations. Anticancer Res. 2007;27:391–4.PubMedGoogle Scholar
  79. 79.
    Piazuelo MB, Camargo MC, Mera RM, Delgado AG, Peek RM Jr, Correa H, et al. Eosinophils and mast cells in chronic gastritis: possible implications in carcinogenesis. Hum Pathol. 2008;39:1360–9.PubMedCrossRefGoogle Scholar
  80. 80.
    Beil WJ, McEuen AR, Schulz M, Wefelmeyer U, Kraml G, Walls AF, et al. Selective alterations in mast cell subsets and eosinophil infiltration in two complementary types of intestinal inflammation: ascariasis and Crohn’s disease. Pathobiology 2002;70:303–13.PubMedCrossRefGoogle Scholar
  81. 81.
    Bachelet I, Munitz A, Mankutad D, Levi-Schaffer F. Mast cell costimulation by CD226/CD112 (DNAM-1/Nectin-2): a novel interface in the allergic process. J Biol Chem. 2006;281:27190–6.PubMedCrossRefGoogle Scholar
  82. 82.
    Bachelet I, Munitz A, Moretta A, Moretta L, Levi-Schaffer F. The inhibitory receptor IRp60 (CD300a) is expressed and functional on human mast cells. J Immunol. 2005;175:7989–95.PubMedGoogle Scholar
  83. 83.
    Shibuya A, Campbell D, Hannum C, Yssel H, Franz-Bacon K, McClanahan T, et al. DNAM-1, a novel adhesion molecule involved in the cytolytic function of T lymphocytes. Immunity 1996;4:573–81.PubMedCrossRefGoogle Scholar
  84. 84.
    Bottino C, Castriconi R, Pende D, Rivera P, Nanni M, Carnemolla B, et al. Identification of PVR (CD155) and Nectin-2 (CD112) as cell surface ligands for the human DNAM-1 (CD226) activating molecule. J Exp Med. 2003;198:557–67.PubMedCrossRefGoogle Scholar
  85. 85.
    Pende D, Bottino C, Castriconi R, Cantoni C, Marcenaro S, Rivera P, et al. PVR (CD155) and Nectin-2 (CD112) as ligands of the human DNAM-1 (CD226) activating receptor: involvement in tumor cell lysis. Mol Immunol. 2005;42:463–9.PubMedCrossRefGoogle Scholar
  86. 86.
    Munitz A, Bachelet I, Fraenkel S, Katz G, Mandelboim O, Simon HU, et al. 2B4 (CD244) is expressed and functional on human eosinophils. J Immunol. 2005;174:110–8.PubMedGoogle Scholar
  87. 87.
    Munitz A, Bachelet I, Eliashar R, Khodoun M, Finkelman FD, Rothenberg ME, et al. CD48 is an allergen and IL-3-induced activation molecule on eosinophils. J Immunol. 2006;177:77–83.PubMedGoogle Scholar
  88. 88.
    Forbes E, Hulett M, Ahrens R, Wagner N, Smart V, Matthaei KI, et al. ICAM-1-dependent pathways regulate colonic eosinophilic inflammation. J Leukoc Biol. 2006;80:330–41.PubMedCrossRefGoogle Scholar
  89. 89.
    Fox CC, Jewell SD, Whitacre CC. Rat peritoneal mast cells present antigen to a PPD-specific T cell line. Cell Immunol. 1994;158:253–64.PubMedCrossRefGoogle Scholar
  90. 90.
    Guo CB, Kagey-Sobotka A, Lichtenstein LM, Bochner BS. Immunophenotyping and functional analysis of purified human uterine mast cells. Blood 1992;79:708–12.PubMedGoogle Scholar
  91. 91.
    Munitz A, Bachelet I, Eliashar R, Moretta A, Moretta L, Levi-Schaffer F. The inhibitory receptor IRp60 (CD300a) suppresses the effects of IL-5, GM-CSF, and eotaxin on human peripheral blood eosinophils. Blood 2006;107:1996–2003.PubMedCrossRefGoogle Scholar
  92. 92.
    Stern M, Savill J, Haslett C. Human monocyte-derived macrophage phagocytosis of senescent eosinophils undergoing apoptosis. Mediation by alpha v beta 3/CD36/thrombospondin recognition mechanism and lack of phlogistic response. Am J Pathol. 1996;149:911–21.PubMedGoogle Scholar
  93. 93.
    Castells MC, Klickstein LB, Hassani K, Cumplido JA, Lacouture ME, Austen KF, et al. gp49B1-alpha(v)beta3 interaction inhibits antigen-induced mast cell activation. Nat Immunol. 2001;2:436–42.PubMedGoogle Scholar
  94. 94.
    Daigle I, Simon HU. Alternative functions for TRAIL receptors in eosinophils and neutrophils. Swiss Med Wkly. 2001;131:231–7.PubMedGoogle Scholar
  95. 95.
    Berent-Maoz B, Piliponsky AM, Daigle I, Simon HU, Levi-Schaffer F. Human mast cells undergo TRAIL-induced apoptosis. J Immunol. 2006;176:2272–8.PubMedGoogle Scholar
  96. 96.
    Berent-Maoz B, Salemi S, Mankuta D, Simon HU, Levi-Schaffer F. TRAIL mediated signaling in human mast cells: the influence of IgE-dependent activation. Allergy 2008;63:333–40.PubMedCrossRefGoogle Scholar

Copyright information

© Birkhäuser Verlag, Basel/Switzerland 2009

Authors and Affiliations

  • Yael Minai-Fleminger
    • 1
  • Francesca Levi-Schaffer
    • 1
    • 2
  1. 1.Department of Pharmacology and Experimental Therapeutics, School of Pharmacy, Faculty of MedicineThe Hebrew University of JerusalemJerusalemIsrael
  2. 2.David R. Bloom Center of Pharmacy and the Adolph and Klara Brettler Center for Research in Molecular Pharmacology and TherapeuticsThe Hebrew University of JerusalemJerusalemIsrael

Personalised recommendations