Inflammation Research

, Volume 58, Issue 8, pp 457–462 | Cite as

feG-COOH blunts eosinophilic airway inflammation in a feline model of allergic asthma

  • Amy E. DeClue
  • Elizabeth Schooley
  • Laura A. Nafe
  • Carol R. Reinero
Original Research Paper


Objective and design

This study investigated if feG-COOH would decrease allergen-induced airway inflammation.

Materials or subjects

Seven adult cats sensitised to Bermuda grass allergen (BGA) to induce an asthmatic phenotype.


Cats were randomized to receive either feG-COOH (1 mg/kg, PO) or placebo (saline 1 ml, PO) immediately prior to BGA aerosol challenge in a cross-over design.


Bronchoalveolar lavage fluid (BALF) was collected and airway inflammatory response assessed via inflammatory cell number and type; IL-4, IFN-γ and nitric oxide metabolite concentrations. A paired t test was used to compare parameters with a P < 0.05 considered significant.


The BALF eosinophil percentage was significantly lower in asthmatic cats treated with feG compared with placebo (placebo, 35.3 ± 12.2%; feG, 22.4 ± 8.6%; P = 0.002). Treatment with feG did not result in a significant change in any other parameter measured.


These data indicate that a single dose of feG-COOH partially attenuates eosinophilic airway inflammation in experimental feline asthma.


Cat Immunomodulator Allergy Cytokine Bronchoalveolar lavage 



The authors would like to thank Craig Woods and Imulan BioTherapeutics for their generous donation of feG-COOH. Additionally, the authors appreciate the assistance of Rachael Cohen this project.


  1. 1.
    Hill J. Diseases of respiratory organs. In: WR Jenkins, editor. The diseases of the cat. New York; 1906. pp 11–21.Google Scholar
  2. 2.
    Padrid P. CVT update: feline asthma. In: Bonagura J, editor. Kirk’s current veterinary therapy XIII: small animal practice. Philadelphia: WB Saunders, 2000, pp. 805–10.Google Scholar
  3. 3.
    Corcoran B, Foster D, Fuentes V. Feline asthma syndrome: a retrospective study of the clinical presentation in 29 cats. J Small Anim Pract. 1995;36:481–8.PubMedCrossRefGoogle Scholar
  4. 4.
    Norris Reinero C, Decile K, Berghaus R, Williams K, Leutenegger C, Walby W, et al. An experimental model of allergic asthma in cats sensitized to house dust mite or Bermuda grass allergen. Int Arch Allergy Immunol. 2004;135:117–31.PubMedCrossRefGoogle Scholar
  5. 5.
    Dye J, McKiernan B, Rozanski E, et al. Bronchopulmonary disease in the cat: historical, physical, radiographic, clinicopathologic, and pulmonary function evaluation of 24 affected and 15 healthy cats. J Vet Intern Med.. 1996;10:385–400.PubMedCrossRefGoogle Scholar
  6. 6.
    Padrid P, Snook S, Finucane T. Persistent airway hyperresponsiveness and histologic alterations after chronic antigen challenge in cats. Am J Respir Crit Care Med. 1995;151:184–93.PubMedGoogle Scholar
  7. 7.
    Yssel H, Groux H. Characterization of T cell subpopulations involved in the pathogenesis of asthma and allergic diseases. Int Arch Allergy Immunol. 2000;121:10–8.PubMedCrossRefGoogle Scholar
  8. 8.
    Feder L, Stelts D, Chapman R, Manfra D, Crawley H, Jones H, et al. Role of nitric oxide on eosinophilic lung inflammation in allergic mice. Am J Respir Cell Mol Biol. 1997;17:436–42.PubMedGoogle Scholar
  9. 9.
    Sternberg E. Neuroendocrine regulation of autoimmune/inflammatory disease. J Endocrinol. 2001;169:429–35.PubMedCrossRefGoogle Scholar
  10. 10.
    Dery R, Mathison R, Davidson J, Befus A. Inhibition of allergic inflammation by C-terminal peptides of the prohormone submandibular rat 1 (SMR-1). Int Arch Allergy Immunol. 2001;124:201–4.PubMedCrossRefGoogle Scholar
  11. 11.
    Dery R, Ulanova M, Puttagunta L, Stenton G, James D, Merani S, et al. Inhibition of allergen-induced pulmonary inflammation by the tripeptide feG: a mimetic of a neuro-endocrine pathway. Eur J Immunol. 2004;34:3315–25.PubMedCrossRefGoogle Scholar
  12. 12.
    Hawkins E, DeNicola D, Kuehn N. Bronchoalveolar lavage in the evaluation of pulmonary disease in the dog and cat: state of the art. J Vet Intern Med. 1990;4:267–74.PubMedCrossRefGoogle Scholar
  13. 13.
    Bay J, Johnson L. Feline bronchial disease/asthma. In: King L, editor. Textbook of respiratory disease in dogs and cats. St. Louis: Elsevier; 2004. p. 388–96.CrossRefGoogle Scholar
  14. 14.
    Padrid P. Feline asthma. Diagnosis and treatment. Vet Clin North Am Small Anim Pract. 2000;30:1279–93.PubMedGoogle Scholar
  15. 15.
    Cohn L, Elias J, Chupp G. Asthma: mechanisms of disease persistence and progression. Ann Rev Immunol. 2004;22:789–815.CrossRefGoogle Scholar
  16. 16.
    Ramaswamy K, Mathison R, Carter L, Kirk D, Green F, Davison J, et al. Marked antiinflammatory effects of decentralization of the superior cervical ganglia. J Exp Med. 1990;172:1819–30.PubMedCrossRefGoogle Scholar
  17. 17.
    Mathison R, Davidson J, De Sanctis G, Green F, Befus A. Decentralization of the superior cervical ganglia and the immediate hypersensitivity response. Proc Soc Exp Biol Med. 1992;200:542–7.PubMedGoogle Scholar
  18. 18.
    Kemp A, Mellow L, Sabbadini E. Suppression and enhancement of in vitro lymphocyte reactivity by factors in rat submandibular gland extracts. Immunology. 1985;56:261–7.PubMedGoogle Scholar
  19. 19.
    Reinero C, Cohn L, Delgado C, Spinka C, Schooley E, DeClue A. Adjuvanted rush immunotherapy using CpG oligodeoxynucleotides in experimental feline allergic asthma. Vet Immunol Immunopathol. 2008;121:241–50.PubMedCrossRefGoogle Scholar
  20. 20.
    Richardson J, Beland J. Nonadrenergic inhibitory nervous system in human airways. J Appl Physiol. 1976;41:764–71.PubMedGoogle Scholar
  21. 21.
    Irvin C, Boileau R, Tremblay J, Martin R, Macklem P. Bronchodilatation: noncholinergic, nonadrenergic mediation demonstrated in vivo in the cat. Science. 1980;207:791–2.PubMedCrossRefGoogle Scholar
  22. 22.
    Diamond L, O’Donnell M. A nonadrenergic vagal inhibitory pathway to feline airways. Science. 1980;208:185–8.PubMedCrossRefGoogle Scholar
  23. 23.
    Diamond L, Szarek J, Gillespie M, Altiere R. In vivo bronchodilatory activity of vasoactive intestinal peptide in the cat. Am Rev Respir Dis. 1983;128:827–32.PubMedGoogle Scholar
  24. 24.
    Takahashi N, Tanaka H, Abdullah N, Jing L, Inoue R, Ito Y. Regional difference in the distribution of L-NAME-sensitive and -insensitive NANC relaxations in cat airway. J Physiol. 1995;488:709–20.PubMedGoogle Scholar
  25. 25.
    Jang L, Inoue R, Tashiro K, Takahashi S, Ito Y. Role of nitric oxide in non-adrenergic, non-cholinergic relaxation and modulation of excitatory neuroeffector transmission in the cat airway. J Physiol. 1995;483:225–37.Google Scholar
  26. 26.
    van der Velden V, Hulsmann A. Autonomic innervation of human airways: structure, function and pathophysiology in asthma. Neuroimmunomodulation. 1999;6:145–59.PubMedCrossRefGoogle Scholar
  27. 27.
    Shaw D, Berry M, Thomas M, Green R, Brightling C, Wardlaw A, et al. The use of exhaled nitric oxide to guide asthma management: a randomized controlled trial. Am J Repir Crit Care Med. 2007;176:231–7.CrossRefGoogle Scholar
  28. 28.
    Kumar L, Rajput N, Majumdar S. Nitric oxide metabolites in induced sputum: a noninvasive marker of airway inflammation in asthma. Indian Pediatr. 2005;42:329–37.PubMedGoogle Scholar

Copyright information

© Birkhäuser Verlag, Basel/Switzerland 2009

Authors and Affiliations

  • Amy E. DeClue
    • 1
  • Elizabeth Schooley
    • 1
    • 2
  • Laura A. Nafe
    • 1
  • Carol R. Reinero
    • 1
  1. 1.Department of Medicine and Surgery, College of Veterinary MedicineUniversity of MissouriColumbiaUSA
  2. 2.Veterinary Referral and Critical CareManakin-SabotUSA

Personalised recommendations