Advertisement

A variety of Steiner loops satisfying Moufang’s theorem: a solution to Rajah’s Problem

  • Aleš Drápal
  • Petr VojtěchovskýEmail author
Article
  • 9 Downloads

Abstract

A loop X is said to satisfy Moufang’s theorem if for every \(x,y,z\in X\) such that \(x(yz)=(xy)z\) the subloop generated by x, y, z is a group. We prove that the variety V of Steiner loops satisfying the identity \((xz)(((xy)z)(yz)) = ((xz)((xy)z))(yz)\) is not contained in the variety of Moufang loops, yet every loop in V satisfies Moufang’s theorem. This solves a problem posed by Andrew Rajah.

Keywords

Moufang’s theorem Steiner loop Steiner triple system Pasch configuration 

Mathematics Subject Classification

20N05 05B07 

Notes

References

  1. 1.
    Colbourn, C.J., Giuliani, M.D.L.M., Rosa, A., Stuhl, I.: Steiner loops satisfying Moufang’s theorem. Aust. J. Combin. 6(3), 170–181 (2015)MathSciNetzbMATHGoogle Scholar
  2. 2.
    Colbourn, C.J., Rosa, A.: Triple Systems, Oxford Mathematical Monographs. Oxford University Press, New York (1999)Google Scholar
  3. 3.
    Drápal, A.: A simplified proof of Moufang’s theorem. Proc. Am. Math. Soc. 139(1), 93–98 (2011)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Moufang, R.: Zur Struktur von Alternativkörpern. Math. Ann. 110, 416–430 (1935)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Rasskazova, M.: Non-Moufang variety of Steiner loops satisfying Moufang’s theorem (preprint) Google Scholar
  6. 6.
    Stuhl, I.: Moufang’s theorem for non-Moufang loops. Aequ. Math. 90, 329–333 (2016)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Wikipedia.org: List of problems in loop theory and quasigroup theoryGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of MathematicsCharles UniversityPraha 8Czech Republic
  2. 2.Department of MathematicsUniversity of DenverDenverUSA

Personalised recommendations