Advertisement

Aequationes mathematicae

, Volume 93, Issue 6, pp 1275–1291 | Cite as

A note on the Levi-Civita functional equation

  • Keltouma Belfakih
  • Elhoucien ElqorachiEmail author
Article
  • 29 Downloads

Abstract

In this paper we find the solutions of the functional equation
$$\begin{aligned} f(xy)=g(x)h(y)+\sum _{j=1}^{n}g_j(x)h_j(y),\;x,y \in M, \end{aligned}$$
where M is a monoid, \(n\ge 2\), and \(g_j\) (for \(j=1,\ldots ,n\)) are linear combinations of at least 2 distinct nonzero multiplicative functions.

Keywords

Sine addition formula Levi-Civita functional equation Monoid Functional equation Multiplicative function 

Mathematics Subject Classification

39B52 39B32 

Notes

References

  1. 1.
    Chung, J,K., Kannappan, Pl, Ng, C,T.: A generalization of the cosine–sine functional equation on groups. Linear Algebra Appl. 66, 259–277 (1985)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Ebanks, B.: An extension of the sine addition formula on groups and semigroups. Publ. Math. Debr. 93(1–2), 9–27 (2018)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Ebanks, B., Stetkær, H.: Extensions of the sine addition formula on monoids. Results Math. 73, 119 (2018).  https://doi.org/10.1007/s00025-018-0880-z MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Shulman, E.: Group representations and stability of functional equations. J. Lond. Math. Soc. (2) 54(1), 111–120 (1996)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Stetkær, H.: Functional Equations on Groups. World Scientific, Singapore (2013)CrossRefGoogle Scholar
  6. 6.
    Stetkær, H.: Extensions of the sine addition law on groups. Aequ. Math. (2018).  https://doi.org/10.1007/s00010-018-0584-1 CrossRefzbMATHGoogle Scholar
  7. 7.
    Székelyhidi, L.: On the Levi-Civita functional equation. Berichte der Mathematisch-Statistischen Sektion in der Forschungsgesellschaft Joanneum, 301. Forschungszentrum Graz, Mathematisch-Statistische Sektion, Graz, 23 pp (1988)Google Scholar
  8. 8.
    Székelyhidi, L.: Convolution Type Functional Equations on Topological Abelian Groups. World Scientific, Teaneck (1991)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Mathematics, Faculty of SciencesUniversity Ibn ZohrAgadirMorocco

Personalised recommendations