Advertisement

Aequationes mathematicae

, Volume 93, Issue 6, pp 1231–1244 | Cite as

Extensions of Kannan contraction via w-distances

  • Hossein Lakzian
  • Vladimir RakočevićEmail author
  • Hassen Aydi
Article
  • 40 Downloads

Abstract

In this paper, we introduce and study some fixed point results for \(\phi \)-Kannan contractions in metric spaces with w-distance. Among other things, we have recovered Suzuki’s (Yokohama Math 44:61–72, 1997) results for p-Kannan contractions. Some examples and consequences are also presented to illustrate our results.

Keywords

Fixed point w-Distance Approximating fixed point sequence Kannan type contraction 

Mathematics Subject Classification

47H10 47H09 54H25 

Notes

Acknowledgements

The authors are thankful to the anonymous referees for the useful suggestions and remarks that contributed to the improvement of the manuscript.

References

  1. 1.
    Alber, Ya.I., Guerre–Delabriere, S.: Principles of weakly contractive maps in Hilbert spaces. In: New Results in Operator Theory. Advances and Appl. Gohberg, I., Lyubich, Yu. (eds) Birkhauser Verlag, Basel 98, pp. 7–22 (1997)Google Scholar
  2. 2.
    Aydi, H., Wongyat, T., Sintunavarat, W.: On new evolution of Ri’s result via \(w\)-distances and the study on the solution for nonlinear integral equations and fractional differential equations. Adv. Differ. Equ. 2018, 132 (2018)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Connell, E.H.: Properties of fixed point spaces. Proc. Am. Math. Soc. 10, 974–975 (1959)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Kostić, A., Rakǒcević, V., Radenović, S.: Best proximity points involving simulation functions with \(w_0\)-distance. RACSAM 113, 715 (2019).  https://doi.org/10.1007/s13398-018-0512-1 MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Kada, O., Suzuki, T., Takahashi, W.: Nonconvex minimization theorems and fixed point theorems in complete metric spaces. Math. Jpn. 44, 381–591 (1996)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Kannan, R.: Some results on fixed points. Bull. Calcutta Math. Soc. 60, 71–76 (1968)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Lakzian, H., Aydi, H., Rhoades, B.E.: Fixed points for \((\varphi,\psi, p)\)-weakly contractive mappings in metric spaces with \(w\)-distance. Appl. Math. Comput. 219, 6777–6782 (2013)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Lakzian, H., Rhoades, B.E.: Some fixed point theorems using weaker Meir-Keeler function in metric spaces with \(w\)-distance. Appl. Math. Comput. (accepted)Google Scholar
  9. 9.
    Lakzian, H., Gopal, D., Sintunavarat, W.: New fixed point results for mappings of contractive type with an application to nonlinear fractional differential equations. J. Fixed Point Theory Appl. 18, 251–266 (2016)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Lakzian, H., Lin, Ing-Jer: The existence of fixed points for nonlinear contractive maps in metric spaces with \(w\)-distances. J. Appl. Math. 2012, Article ID 161470Google Scholar
  11. 11.
    Rhoades, B.E.: Some theorems on weakly contractive maps. Nonlinear Anal. 47, 2683–2693 (2001)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Subrahmanyam, P.V.: Completness and fixed points. Monatsh. Math. 80, 325–330 (1975)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Suzuki, T.: Several fixed point theorems in complete metric spaces. Yokohama Math. 44, 61–72 (1997)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Hossein Lakzian
    • 1
  • Vladimir Rakočević
    • 2
    Email author
  • Hassen Aydi
    • 3
  1. 1.Department of MathematicsPayame Noor UniversityTehranIslamic Republic of Iran
  2. 2.Faculty of Sciences and MathematicsUniversity of NisNišSerbia
  3. 3.Department of Mathematics, College of Education in JubailImam Abdulrahman Bin Faisal UniversityIndustrial JubailSaudi Arabia

Personalised recommendations