The weak group matrix

  • Hongxing WangEmail author
  • Xiaoji Liu


In this paper,we introduce the weak group matrix defined by the one commutable with its weak group inverse, and consider properties and characterizations of the matrix by applying the core-EP decomposition. In particular,the set of weak group matrices is more inclusive than that of group matrices. We also derive some characterizations of p-EP matrices and i-EP matrices.


Weak group matrix Group matrix p-EP matrix i-EP matrix Core-EP decomposition 

Mathematics Subject Classification

15A09 15A57 15A24 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work is supported by Guangxi Natural Science Foundation [Grant Number 2018GXNSFAA138181], the China Postdoctoral Science Foundation [Grant Number 2015M581690], the National Natural Science Foundation of China [Grant Number 61772006] and the Special Fund for Bagui Scholars of Guangxi. The Xiaoji Liu was supported partially by the National Natural Science Foundation of China [Grant Number 11361009], the Special Fund for Science and Technological Bases and Talents of Guangxi [Grant Number 2016AD05050] and High level innovation teams and distinguished scholars in Guangxi Universities.

Compliance with ethical standards

Conflict of interest

All authors declare that they have no conflict of interest.


  1. 1.
    Baksalary, O.M., Trenkler, G.: Core inverse of matrices. Linear Multilinear Algebra 58, 681–697 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Baksalary, O.M., Trenkler, G.: On a generalized core inverse. Appl. Math. Comput. 236, 450–457 (2014)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Ben-Israel, A., Greville, T.N.E.: Generalized Inverses: Theory and Applications, 2nd edn. Springer, Berlin (2003)zbMATHGoogle Scholar
  4. 4.
    Campbell, S.L., Meyer, C.D.: Generalized Inverses of Linear Transformations. SIAM, Bangkok (2009)CrossRefzbMATHGoogle Scholar
  5. 5.
    de Andrade, B.J.: A note on the product of two matrices of index one. Linear Multilinear Algebra 65(7), 1479–1492 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Ferreyra, D.E., Levis, F.E., Thome, N.: Characterizations of \(k\) commutative equalities for some outer generalized inverses. Linear Multilinear Algebra (2018).
  7. 7.
    Hartwig, R.E., Spindelböck, K.: Matrices for which \(A^{\ast } \) and \(A^{ }\) commute. Linear Multilinear Algebra 14(3), 241–256 (1984)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Li, T., Chen, J.: Characterizations of core and dual core inverses in rings with involution. Linear Multilinear Algebra 66(4), 717–730 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Malik, S.B., Rueda, L., Thome, N.: The class of \(m\)-EP and \(m\)-normal matrices. Linear Multilinear Algebra 64(11), 2119–2132 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Malik, S.B., Thome, N.: On a new generalized inverse for matrices of an arbitrary index. Appl. Math. Comput. 226, 575–580 (2014)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Manjunatha Prasad, K., Mohana, K.S.: Core-EP inverse. Linear Multilinear Algebra 62(6), 792–802 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Meenakshi, A.R., Krishnamoorthy, S.: On \(k\)-EP matrices. Linear Algebra Appl. 269(1–3), 219–232 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Mehdipour, M., Salemi, A.: On a new generalized inverse of matrices. Linear Multilinear Algebra 66(5), 1046–1053 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Mosić, D.: The CMP inverse for rectangular matrices. Aequ. Math. 92, 649–659 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Pearl, M.H.: On generalized inverses of matrices. Math. Proc. Camb. Philos. Soc. 62, 673–677 (1966)CrossRefzbMATHGoogle Scholar
  16. 16.
    Tian, Y.: How to characterize commutativity equalities for Drazin inverses of matrices. Arch. Math. 39(3), 191–199 (2003)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Tian, Y., Wang, H.: Characterizations of EP matrices and weighted-EP matrices. Linear Algebra Appl. 434(5), 1295–1318 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Wang, H., Liu, X.: Characterizations of the core inverse and the core partial ordering. Linear Multilinear Algebra 63(9), 1829–1836 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Wang, H.: Core-EP decomposition and its applications. Linear Algebra Appl. 508, 289–300 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Wang, H., Chen, J.: Weak group inverse. Open Math. 16, 1218–1232 (2018)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Xu, S., Chen, J., Zhang, X.: New characterizations for core inverses in rings with involution. Front. Math. China 12(1), 231–246 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Zhang, F.: Matrix Theory: Basic Results and Techniques. Springer, Berlin (2011)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.School of Science, Guangxi Key Laboratory of Hybrid Computation and IC Design AnalysisGuangxi University for NationalitiesNanningPeople’s Republic of China

Personalised recommendations