Lie (Jordan) derivations of arbitrary triangular algebras
Article
First Online:
- 9 Downloads
Abstract
In this paper we construct a triangular algebra from a given triangular algebra, using the notion of maximal left (right) ring of quotients. As an application we give a description of Lie (Jordan) derivations of arbitrary triangular algebras through the constructed triangular algebra.
Keywords
Triangular algebra Maximal left ring of quotients Lie derivation Jordan derivation DerivationMathematics Subject Classification
16W25 16R60Preview
Unable to display preview. Download preview PDF.
Notes
Acknowledgements
The author is grateful to the referee for useful comments.
References
- 1.Beidar, K.I., Chebotar, M.A.: On Lie derivations of Lie ideals of prime rings. Isr. J. Math. 123, 131–148 (2001)CrossRefGoogle Scholar
- 2.Beidar, K.I., Martindale 3rd, W.S., Mikhale, A.: Rings with Generalized Identities. Marcel Dekker, NewYork (1996)Google Scholar
- 3.Benkovič, D.: Lie triple derivations of unital algebras with idempotents. Linear Multilinear Algebra 63, 141–165 (2004)MathSciNetCrossRefGoogle Scholar
- 4.Benkovič, D.: Lie derivations on triangular matrices. Linear Multilinear Algebra 55, 619–629 (2007)MathSciNetCrossRefGoogle Scholar
- 5.Benkovič, D.: Generalized Lie derivations on triangular rings. Linear Algebra Appl. 434, 1532–1544 (2011)MathSciNetCrossRefGoogle Scholar
- 6.Benkovič, D.: A note on \(f\)-derivations of triangular algebras. Aequ. Math. 89, 1207–1211 (2015)MathSciNetCrossRefGoogle Scholar
- 7.Benkovič, D., Eremita, D.: Commuting traces and commutativity preserving maps on triangular algebras. J. Algebra 280, 797–824 (2004)MathSciNetCrossRefGoogle Scholar
- 8.Benkovič, D., Eremita, D.: Multiplicative Lie \(n\)-derivations of triangular rings. Linear Algebra Appl. 436, 4223–4240 (2012)MathSciNetCrossRefGoogle Scholar
- 9.Brešar, M.: Commuting traces of biadditive mappings, commutativity preserving mappings and Lie mappings. Trans. Am. Math. Soc. 335, 525–546 (1993)MathSciNetCrossRefGoogle Scholar
- 10.Brešar, M., Chebotar, M.A.: Martindale 3rd W. S.: Functional Identities. Birkhäuser Verlag, Basel (2007)Google Scholar
- 11.Brešar, M., Šemel, P.: Commuting traces of biadditive maps revisited. Commun. Algebra 31, 381–388 (2003)MathSciNetCrossRefGoogle Scholar
- 12.Cheung, W.S.: Commuting maps of triangular algebras. J. Lond. Math. Soc. 63, 117–127 (2001)MathSciNetCrossRefGoogle Scholar
- 13.Cheung, W.S.: Lie derivations of triangular algebras. Linear Multilinear Algebra 51, 299–310 (2003)MathSciNetCrossRefGoogle Scholar
- 14.Eremita, D.: Functional identities of degree \(2\) in triangular rings. Linear Algebra Appl. 438, 584–597 (2013)MathSciNetCrossRefGoogle Scholar
- 15.Eremita, D.: Functional identities of degree \(2\) in triangular rings revisited. Linear Multilinear Algebra 63, 534–553 (2015)MathSciNetCrossRefGoogle Scholar
- 16.Eremita, D.: Commuting traces of upper triangular matrix rings. Aequ. Math. 91, 563–578 (2017)MathSciNetCrossRefGoogle Scholar
- 17.Mathieu, M., Villena, A.R.: The structure of Lie derivations on \(C^*\)-algebras. J. Funct. Anal. 202, 504–525 (2003)MathSciNetCrossRefGoogle Scholar
- 18.Martindale, M.S.: Lie derivations of primitive rings. Mich. Math. 11, 183–187 (1964)MathSciNetCrossRefGoogle Scholar
- 19.Stenström B.: The maximal ring of quotients of a triangular matrix ring. Math. Scand. 34, 162–166 (1974)Google Scholar
- 20.Utumi, Y.: On quotient rings. Osaka J. Math. 8, 1–18 (1956)MathSciNetzbMATHGoogle Scholar
- 21.Villena, A.R.: Lie derivations on Banach algebras. J. Algebra 226, 390–409 (2000)MathSciNetCrossRefGoogle Scholar
- 22.Wang, Y.: Functional identities of degree \(2\) in arbitrary triangular algebras. Linear Algebra Appl. 479, 171–184 (2015)MathSciNetCrossRefGoogle Scholar
- 23.Wang, Y.: Biderivations of triangular rings. Linear Multilinear Algebra 64, 1952–1959 (2016)MathSciNetCrossRefGoogle Scholar
- 24.Wang, Y.: Commuting (centralizing) traces and Lie (triple) isomorphisms on triangular algebras revisited. Linear Algebra Appl. 488, 45–70 (2016)MathSciNetCrossRefGoogle Scholar
- 25.Zhang, J.H., Yu, W.Y.: Jordan derivations of triangular algebras. Linear Algebra Appl. 419, 251–255 (2006)MathSciNetCrossRefGoogle Scholar
Copyright information
© Springer Nature Switzerland AG 2019