Advertisement

Aequationes mathematicae

, Volume 93, Issue 1, pp 149–160 | Cite as

The geometric rate of convergence of random iteration in the Hutchinson distance

  • Rafał KapicaEmail author
Open Access
Article

Abstract

Using the Banach fixed-point theorem we provide a simple criterion of the geometric rate of convergence and of asymptotic stability of Markov operators in the Hutchinson distance. The obtained results are applied to sequences of iterates of random-valued functions.

Keywords

Markov operators Random-valued functions Random iteration Asymptotic stability Rate of convergence 

Mathematics Subject Classification

Primary 60J05 Secondary 37A99 

Notes

Acknowledgements

This work was partially supported by the Faculty of Applied Mathematics AGH UST statutory tasks within subsidy of Ministry of Science and Higher Education.

References

  1. 1.
    Baron, K.: On the convergence in law of iterates of random-valued functions. Aust. J. Math. Anal. Appl. 6, 1–9 (2009)MathSciNetzbMATHGoogle Scholar
  2. 2.
    Baron, K.: Weak law of large numbers for iterates of random-valued functions. Aequat. Math. (2018).  https://doi.org/10.1007/s00010-018-0585-0
  3. 3.
    Baron, K., Jarczyk, W.: Random-valued functions and iterative functional equations. Aequat. Math. 67, 140–153 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Baron, K., Kuczma, M.: Iteration of random-valued functions on the unit interval. Colloq. Math. 37, 263–269 (1977)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Diamond, P.: A stochastic functional equation. Aequat. Math. 15, 225–233 (1977)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Dudley, R.M.: Real Analysis and Probability. Cambridge Studies in Advanced Mathematics, vol. 74. Cambridge Univerity Press, Cambridge (2002)CrossRefGoogle Scholar
  7. 7.
    Fortet, R., Mourier, E.: Convergence de la répartition empirique vers la répartition théorique. Ann. Sci. Ecole Norm. Sup. 70, 267–285 (1953)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Hutchinson, J.: Fractals and self-similarity. Indiana Univ. Math. J. 30, 713–747 (1981)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Kapica, R.: Random iteration and Markov operators. J. Differ. Equ. Appl. 22, 295–305 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Lasota, A.: From fractals to stochastic differential equations. Lect. Notes Phys. 457, 235–255 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Villani, C.: Optimal transport. Old and new. In: Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 338, Springer, Berlin (2009)Google Scholar

Copyright information

© The Author(s) 2018

Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.Faculty of Applied MathematicsAGH University of Science and TechnologyKrakówPoland

Personalised recommendations