Advertisement

Aequationes mathematicae

, Volume 93, Issue 1, pp 1–8 | Cite as

Karol Baron: a little bit about him on his 70th birthday

  • Witold Jarczyk
  • Janusz MorawiecEmail author
Open Access
Article
  • 97 Downloads

Notes

Acknowledgements

The research of the second author was supported by the University of Silesia, Mathematics Department (Iterative Functional Equations and Real Analysis program).

References

  1. 1.
    Baron, K.: On the continuous solutions of a non-linear functional equation of the first order. Ann. Polon. Math. 28, 201–205 (1973)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Baron, K.: Functional equations of infinite order, Prace Naukowe Uniwersytetu Śląskiego w Katowicach 265, Uniwersytet Śląski, Katowice (1978)Google Scholar
  3. 3.
    Baron, K.: On the convergence of sequences of iterates of random-valued functions. Aequ. Math. 32, 240–251 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Baron, K.: Recent Results in a Theory of Functional Equations in a Single Variable, Series Mathematicae Catoviciensis et Debreceniensis (Seminar LV), vol. 15 http://www.math.us.edu.pl/smdk/papers2.html (2003)
  5. 5.
    Baron, K.: Linear iterative equations of higher orders and random-valued functions. Publ. Math. Debr. 75, 1–9 (2009)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Baron, K.: On Baire measurable solutions of some functional equations. Cent. Eur. J. Math. 7, 804–808 (2009)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Baron, K.: On the convergence in law of iterates of random-valued functions. Aust. J. Math. Anal. Appl. 6(1), 9 (2009). Art. 3MathSciNetzbMATHGoogle Scholar
  8. 8.
    Baron, K.: On additive involutions and Hamel bases. Aequ. Math. 87, 159–163 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Baron, K.: Orthogonally additive bijections are additive. Aequ. Math. 89, 297–299 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Baron, K.: On the set of orthogonally additive functions with orthogonally additive second iterate. Aequ. Math. 91, 995–1000 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Baron, K., Chojnacki, W., Jarczyk, W.: Continuity of solutions of the translation equation. Aequ. Math. 74, 314–317 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Baron, K., Jarczyk, W.: Recent results on functional equations in a single variable, perspectives and open problems. Aequ. Math. 61, 1–48 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Baron, K., Jarczyk, W.: Random-valued functions and iterative functional equations. Aequ. Math. 67, 140–153 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Baron, K., Kapica, R.: A uniqueness-type problem for linear iterative equations. Analysis (Munich) 29, 95–101 (2009)MathSciNetzbMATHGoogle Scholar
  15. 15.
    Baron, K., Kuczma, M.: Iteration of random-valued functions on the unit interval. Colloq. Math. 37, 263–269 (1977)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Baron, K., Lasota, A.: Asymptotic properties of Markov operators defined by Volterra type integrals. Ann. Polon. Math. 58, 161–175 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Baron, K., Morawiec, J.: Lipschitzian solutions to linear iterative equations. Publ. Math. Debr. 89, 277–285 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Baron, K., Morawiec, J.: Lipschitzian solutions to linear iterative equations revisited. Aequ. Math. 91, 161–167 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Baron, K., Rätz, J.: On orthogonally additive mappings on inner product spaces. Bull. Pol. Acad. Sci. Math. 43, 187–189 (1995)MathSciNetzbMATHGoogle Scholar
  20. 20.
    Baron, K., Simon, A., Volkmann, P.: Solutions d’une équation fontionnelle dans l’espace des distributions tempérées. C. R. Math. Acad. Sci. Paris 319, 1249–1252 (1994)zbMATHGoogle Scholar
  21. 21.
    Derfel, G., Schilling, R.: Spatially chaotic configurations and functional equations with rescaling. J. Phys. A 29, 4537–4547 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Kuczma, M.: Functional Equations in a Single Variable. Monografie Mat. 46, PWN—Polish Scientific Publishers, Warszawa (1968)Google Scholar
  23. 23.
    Schilling, R.: Spatially chaotic structures. In: Thomas, H. (ed.) Nonlinear Dynamics in Solids, pp. 213–241. Springer, Berlin (1992)CrossRefGoogle Scholar
  24. 24.
    Sikorski, R.: Funkcje rzeczywiste, tom I, Monografie Mat. 35, Państwowe Wydawnictwo Naukowe, Warszawa, (1958) [in Polish] Google Scholar

Copyright information

© The Author(s) 2018

Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.Instytut Matematyki i InformatykiKatolicki Uniwersytet Lubelski Jana Pawła IILublinPoland
  2. 2.Wydział Matematyki, Informatyki i EkonometriiUniwersytet ZielonogórskiZielona GoraPoland
  3. 3.Instytut MatematykiUniwersytet ŚląskiKatowicePoland

Personalised recommendations