Advertisement

Aequationes mathematicae

, Volume 92, Issue 5, pp 801–872 | Cite as

Invariance of means

  • Justyna JarczykEmail author
  • Witold Jarczyk
Open Access
Article

Abstract

We give a survey of results dealing with the problem of invariance of means which, for means of two variables, is expressed by the equality \(K\circ \left( M,N\right) =K\). At the very beginning the Gauss composition of means and its strict connection with the invariance problem is presented. Most of the reported research was done during the last two decades, when means theory became one of the most engaging and influential topics of the theory of functional equations. The main attention has been focused on quasi-arithmetic and weighted quasi-arithmetic means, also on some of their surroundings. Among other means of great importance Bajraktarević means and Cauchy means are discussed.

Keywords

Mean Invariance Weighted quasi-arithmetic mean Cauchy mean Lagrangian mean Bajraktarević mean Gauss composition Convergence of successive iterates 

Mathematics Subject Classification

Primary: 26E60 Secondary: 39B22 

Notes

Acknowledgements

The authors are especially indebted to Krzysztof Ciepliński for his strong encouragement to write this survey.

References

  1. 1.
    Aczél, J.: Un problème de M.L. Fejér sur la construction de Leibniz. Bull. Sci. Math. (2) 72, 39–45 (1948)MathSciNetzbMATHGoogle Scholar
  2. 2.
    Aczél, J.: Lectures on Functional Equations and their Applications. Academic Press, New York (1966)zbMATHGoogle Scholar
  3. 3.
    Aczél, J., Daróczy, Z.: Über verallgemeinerte quasilineare Mittelwerte, die mit Gewischts-funktionen gebildet sind. Publ. Math. Debrecen 10, 171–190 (1963)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Aczél, J., Dhombres, J.: Functional Equations in Several Variables with Applications to Mathematics, Information Theory and to the Natural and Social Sciences. Cambridge University Press, Cambridge (1989)zbMATHGoogle Scholar
  5. 5.
    Aczél, J., Fenyő, I., Horváth, J.: Sur certaines classes de fonctionnelles. Portugaliae Math. 8, 1–11 (1949)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Baják, S., Páles, Z.: Invariance equation for generalized quasi-arithmetic means. Aequationes Math. 77, 133–145 (2009)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Baják, S., Páles, Z.: Computer aided solution of the invariance equation for two-variable Gini means. Comput. Math. Appl. 58, 334–340 (2009)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Baják, S., Páles, Z.: Computer aided solution of the invariance equation for two-variable Stolarsky means. Appl. Math. Comput. 216, 3219–3227 (2010)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Baják, S., Páles, Z.: Solving invariance equations involving homogeneous means with the help of computer. Appl. Math. Comput. 219, 6297–6315 (2013)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Bajraktarević, M.: Sur une équation fonctionnelle aux valeurs moyennes. Glasnik Mat.-Fiz. Astr. (2) 13, 243–248 (1958)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Bajraktarević, M.: Sur une généralisation des moyennes quasilinéraires. Publ. Inst. Math. (Beograd) (N.S.) 3, 69–76 (1963)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Bajraktarević, M.: Über die Vergleichbarkeit der mit Gewichtsfunktionen gebildeten Mittelwerte. Studia Sci. Math. Hungar. 4, 3–8 (1969)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Bakula, M.K., Páles, Z., Pec̆arić, J.: On weighted \(L\)-conjugate means. Commun. Appl. Anal. 11, 95–110 (2007)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Baron, K., Kuczma, M.: Iteration of random-valued functions on the unit interval. Colloq. Math. 37, 263–269 (1977)MathSciNetzbMATHGoogle Scholar
  15. 15.
    Beckenbach, E.F.: A class of mean value functions. Am. Math. Monthly 57, 1–6 (1950)MathSciNetzbMATHGoogle Scholar
  16. 16.
    Berrone, L.R., Moro, J.: Lagrangian means. Aequationes Math. 55, 217–226 (1998)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Bhatia, R.: Interpolating the arithmetic-geometric mean inequality and its operator version. Linear Algebra Appl. 413, 355–363 (2006)MathSciNetzbMATHGoogle Scholar
  18. 18.
    Besenyei, A.: On the invariance equation for Heinz means. Math. Inequal. Appl. 15, 973–979 (2012)MathSciNetzbMATHGoogle Scholar
  19. 19.
    Błasińska-Lesk, J., Głazowska, D., Matkowski, J.: An invariance of the geometric mean with respect to Stolarsky mean-type mappings. Results Math. 43, 42–55 (2003)MathSciNetzbMATHGoogle Scholar
  20. 20.
    Borwein, J.M., Borwein, P.B.: Pi and the AGM. A study in analytical number theory and computational complexity, Canadian Mathematical Society Series of Monographs and Advanced Texts, A Wiley-Interscience Publication. Wiley, New York (1987)Google Scholar
  21. 21.
    Bullen, P.S.: Handbook of Means and their Inequalities. Kluwer, Dordrecht (2003)zbMATHGoogle Scholar
  22. 22.
    Bullen, P.S., Mitrinović, D.S., Vasić, P.M.: Means and their inequalities. Mathematics and its Applications (East European Series) 31, D. Reidel Publishing Co., Dordrecht (1988)zbMATHGoogle Scholar
  23. 23.
    Burai, P.: A Matkowski-Sutô type equation. Publ. Math. Debrecen 70, 233–247 (2007)MathSciNetzbMATHGoogle Scholar
  24. 24.
    Burai, P.: Matkowski-Sutô type equation on symmetrized weighted quasi-arithmetic means. Results Math. 63, 397–408 (2013)MathSciNetzbMATHGoogle Scholar
  25. 25.
    Burai, P., Jarczyk, J.: Conditional homogeneity and translativity of Makó–Páles means. Ann. Univ. Sci. Budapest. Sect. Comp. 40, 159–172 (2013)zbMATHGoogle Scholar
  26. 26.
    Burai, P., Jarczyk, J.: On symmetry of Makó–Páles means (submitted)Google Scholar
  27. 27.
    Carlson, B.C.: Algorithms involving arithmetic and geometric means. Am. Math. Monthly (1971)Google Scholar
  28. 28.
    Cauchy, A.L.: Cours d’analyse de l’École Royale Polytechnique, \(I^{\text{ re }}\) partie: Analyse Algébrique. Imprimérie Royale, Paris (1821)Google Scholar
  29. 29.
    Chisini, O.: Sur concetto di media. Period. Mat. 9, 106–122 (1929)zbMATHGoogle Scholar
  30. 30.
    Chisini, O.: Numeros indice et medias. Schola at Vita 5, 181–190 (1930)Google Scholar
  31. 31.
    Chisini, O.: Alcuni theoremi sulle medie. Scritt. Math. in onore di F. Sibirani, Bologna (1957)zbMATHGoogle Scholar
  32. 32.
    Costin, I., Toader, G.: Invariance in the class of weighted Lehmer means, JIPAM J. Inequal. Pure. Appl. Math 9, Article 54, 7 pp (2008)Google Scholar
  33. 33.
    Costin, I., Toader, G.: Invariance of a weighted power mean in the class of weighted Gini means. Autom. Comput. Appl. Math. 21, 35–43 (2012)MathSciNetGoogle Scholar
  34. 34.
    Costin, I., Toader, Gh.: Invariance in the family of weighted Gini means, Handbook of functional equations, 105–127, Springer Optim. Appl., 95, Spinger, New York (2014)Google Scholar
  35. 35.
    Daróczy, Z.: On a class of means of two variables. Publ. Math. Debrecen 55, 177–197 (1999)MathSciNetzbMATHGoogle Scholar
  36. 36.
    Daróczy, Z.: Matkowski-Sutô type problem for conjugate arithmetic means. Rocznik Nauk. –Dydakt. Prace Mat. 17, 89–100 (2000)MathSciNetzbMATHGoogle Scholar
  37. 37.
    Daróczy, Z.: Gaussian iteration of mean values and the existence of \(\sqrt{2}\). Teach. Math. Comput. Sci. 1, 35–45 (2003)Google Scholar
  38. 38.
    Daróczy, Z.: Mean values and functional equations. Differ. Equ. Dyn. Syst. 17, 105–113 (2009)MathSciNetzbMATHGoogle Scholar
  39. 39.
    Daróczy, Z.: On the equality and comparison problem of a class of mean values. Aequationes Math. 81, 201–208 (2011)MathSciNetzbMATHGoogle Scholar
  40. 40.
    Daróczy, Z., Dascăl, J.: On the general solution of a family of functional equations with two parameters and its application. Math. Pannon. 20, 27–36 (2009)MathSciNetzbMATHGoogle Scholar
  41. 41.
    Daróczy, Z., Dascăl, J.: On the equality problem of conjugate means. Results Math. 58, 69–79 (2010)MathSciNetzbMATHGoogle Scholar
  42. 42.
    Daróczy, Z., Hajdu, G.: On linear combinations of weighted quasi-arithmetic means. Aequationes Math. 69, 58–67 (2005)MathSciNetzbMATHGoogle Scholar
  43. 43.
    Daróczy, Z., Hajdu, G., Ng, C.T.: An extension theorem for a Matkowski-Sutô problem. Colloq. Math. 95, 153–161 (2003)MathSciNetzbMATHGoogle Scholar
  44. 44.
    Daróczy, Z., Losonczi, L.: Über der Vergleich von Mittelverter. Publ. Math. Debrecen 17, 289–297 (1970)MathSciNetzbMATHGoogle Scholar
  45. 45.
    Daróczy, Z., Maksa, G.: Functional equations on convex sets. Acta Math. Hungar. 68, 187–195 (1995)MathSciNetzbMATHGoogle Scholar
  46. 46.
    Daróczy, Z., Maksa, G.: On a problem of Matkowski. Colloq. Math. 82, 117–123 (1999)MathSciNetzbMATHGoogle Scholar
  47. 47.
    Daróczy, Z., Maksa, G., Páles, Z.: Extension theorems for the Matkowski-Sutô problem. Demonstratio Math. 23, 544–556 (2000)zbMATHGoogle Scholar
  48. 48.
    Daróczy, Z., Maksa, G., Páles, Z.: On two variable means with variable weights. Aequat. Math. 67, 154–159 (2004)MathSciNetzbMATHGoogle Scholar
  49. 49.
    Daróczy, Z., Páles, Z.: On means that are both quasi-arithmetic and conjugate arithmetic. Acta Math. Hungar. 90, 271–282 (2001)MathSciNetzbMATHGoogle Scholar
  50. 50.
    Daróczy, Z., Páles, Z.: On a class of means on several variables. Math. Inequal. Appl. 4, 331–341 (2001)MathSciNetzbMATHGoogle Scholar
  51. 51.
    Daróczy, Z., Páles, Z.: A Matkowski-Sutô Type Problem for quasi-arithmetic Means of Order \(\alpha \), In: Daróczy, Z., Páles, Zs. (eds.) Functional Equations Results and Advances, Adv. Math. (Dordr.), vol. 3, Kluwer, Dordrecht, pp. 189–200 (2002)Google Scholar
  52. 52.
    Daróczy, Z., Páles, Z.: Gauss-composition of means and the solution of the Matkowski-Sutô problem. Publ. Math. Debrecen 61, 157–218 (2002)MathSciNetzbMATHGoogle Scholar
  53. 53.
    Daróczy, Z., Páles, Z.: The Matkowski-Sutô problem for weighted quasi-arithmetic means. Acta Math. Hungar. 100, 237–243 (2003)MathSciNetzbMATHGoogle Scholar
  54. 54.
    Daróczy, Z., Páles, Z.: A Matkowski-Sutô-type problem for weighted quasi-arithmetic means. Ann. Univ. Sci. Budapest 22, 69–81 (2003)MathSciNetzbMATHGoogle Scholar
  55. 55.
    Daróczy, Z., Páles, Z.: On functional equations involving means. Publ. Math. Debrecen 62, 363–377 (2003)MathSciNetzbMATHGoogle Scholar
  56. 56.
    Daróczy, Z., Páles, Z.: Generalized convexity and comparison of mean values. Acta Sci. Math. (Szeged) 71, 105–116 (2005)MathSciNetzbMATHGoogle Scholar
  57. 57.
    Daróczy, Z., Páles, Z.: On the equality of means, Report of Meeting. The sixth Debrecen-Katowice Winter Seminar on Functional Equations and Inequalities. http://riesz.math.klte.hu/~debkat/2006/2006.html (2006)
  58. 58.
    Daróczy, Z., Páles, Z.: On symmetrized weighted quasi-arithmetic means, Report of Meeting. The Fourty-third International Symposium on Functional Equations. Aequat. Math. 71, 178–179 (2006)Google Scholar
  59. 59.
    Dascăl, J.: On a functional equation with a symmetric component. Publ. Math. Debrecen 75, 33–39 (2009)MathSciNetzbMATHGoogle Scholar
  60. 60.
    Diamond, P.: A stochastic functional equation. Aequat. Math. 15, 225–233 (1977)MathSciNetzbMATHGoogle Scholar
  61. 61.
    Domsta, J., Matkowski, J.: Invariance of the arithmetic mean with respect to special mean-type mappings. Aequat. Math. 71, 70–85 (2006)MathSciNetzbMATHGoogle Scholar
  62. 62.
    de Finetti, B.: Sur concetto di media. Giornale Dell Istitutio Italiano degli Attuari 2, 369–396 (1931)zbMATHGoogle Scholar
  63. 63.
    Foster, D.M.E., Phillips, G.M.: The arithmetic-harmonic mean. Math. Comput. 42, 183–191 (1984)MathSciNetzbMATHGoogle Scholar
  64. 64.
    Gauss, C.F.: Werke. Göttingen (1876)Google Scholar
  65. 65.
    Gauss, C.F., Geppert, H.: Bestimmung der Anziehung eines elliptischen Ringes: Nachlass zur Teorie des arithmetisch-geometrischen Mittels und der Modulfunktion. Engelmann, Leipzig (1927)zbMATHGoogle Scholar
  66. 66.
    Gini, C.: Di una formula comprensiva delle medie. Metron 13, 3–22 (1938)MathSciNetzbMATHGoogle Scholar
  67. 67.
    Głazowska, D.: An invariance of the geometric with respect to Lagrangian conditionally homogeneous mean-type mappings. Demonstratio Math. 40(2), 289–302 (2007)MathSciNetzbMATHGoogle Scholar
  68. 68.
    Głazowska, D.: A solution of an open problem concerning Lagrangian mean-type mappings. Cent. Eur. J. Math. 9, 1067–1073 (2011)MathSciNetzbMATHGoogle Scholar
  69. 69.
    Głazowska, D.: Some Cauchy mean-type mappings for which the geometric mean is invariant. J. Math. Anal. Appl. 375, 418–430 (2011)MathSciNetzbMATHGoogle Scholar
  70. 70.
    Głazowska, D., Jarczyk, J., Jarczyk, W.: Square iterative roots of some mean-type mappings J. Differ. Equ. Appl.  https://doi.org/10.1080/10236198.2017.1326913 MathSciNetzbMATHGoogle Scholar
  71. 71.
    Głazowska, D., Jarczyk, W., Matkowski, J.: Arithmetic mean as a linear combination of two quasi-arithmetic means. Publ. Math. Debrecen 61, 455–467 (2002)MathSciNetzbMATHGoogle Scholar
  72. 72.
    Głazowska, D., Matkowski, J.: An invariance of the geometric mean with respect to Lagrangian means. J. Math. Anal. Appl. 331, 1187–1199 (2007)MathSciNetzbMATHGoogle Scholar
  73. 73.
    Hajdu, G.: An extension theorem for Matkowski-Sutô problem for conjugate arithmetic means. In: Daróczy, Z., Páles, Zs (eds.) Adv. Math. (Dordr.), vol. 3, pp. 201–208. Kluwer, Dordrecht (2002)Google Scholar
  74. 74.
    Hardy, G.H., Littlewood, J.E., Pólya, G.: Inequalities. Cambridge University Press, Cambridge (1934) (1st edn), 1952 (2nd edn)Google Scholar
  75. 75.
    Heinz, E.: Beiträge zur Störungstheorie der Spektalzerlegung. Math. Ann. 123, 415–438 (1951)MathSciNetzbMATHGoogle Scholar
  76. 76.
    Horváth, J.: Note sur un probléme de L. Fejér. Bull. École Polytech. Jassy 3, 164–168 (1948)MathSciNetzbMATHGoogle Scholar
  77. 77.
    Járai, A.: Regularity properties of functional equations in several variables. Advances in Mathematics 8, Springer, New York (2005)Google Scholar
  78. 78.
    Jarczyk, J.: Invariance in the class of weighted quasi-arithmetic means with continuous generators. Publ. Math. Debrecen 71, 279–294 (2007)MathSciNetzbMATHGoogle Scholar
  79. 79.
    Jarczyk, J.: Invariance of quasi-arithmetic means with function weights. J. Math. Anal. Appl. 353, 134–140 (2009)MathSciNetzbMATHGoogle Scholar
  80. 80.
    Jarczyk, J.: Regularity theorem for a functional equation involving means. Publ. Math. Debrecen 75, 123–135 (2009)MathSciNetzbMATHGoogle Scholar
  81. 81.
    Jarczyk, J.: On an equation involving weighted quasi-arithmetic means. Acta Math. Hungar. 129, 96–111 (2010)MathSciNetzbMATHGoogle Scholar
  82. 82.
    Jarczyk, J.: Invariance in a class of Bajraktarević means. Nonlinear Anal. Theory Methods Appl. 72, 2608–2619 (2010)zbMATHGoogle Scholar
  83. 83.
    Jarczyk, J.: Determination of conjugate means by reducing to the generalized Matkowski-Sutô equation. Acta Math. Hungar. 139(1), 1–10 (2013)MathSciNetzbMATHGoogle Scholar
  84. 84.
    Jarczyk, J.: Parametrized means and limit properties of their Gaussian iterations. Appl. Math. Comput. 261, 81–89 (2015)MathSciNetzbMATHGoogle Scholar
  85. 85.
    Jarczyk, J., Matkowski, J.: Invariance in the class of weighted quasi-arithmetic means. Ann. Polon. Math. 88, 39–51 (2006)MathSciNetzbMATHGoogle Scholar
  86. 86.
    Jecklin, H.: Qusiarithmetische Mittelwerte I. Elem. Math. 4, 112–115 (1949)MathSciNetGoogle Scholar
  87. 87.
    Jecklin, H.: Qusiarithmetische Mittelwerte II. Elem. Math. 4, 128–133 (1949)MathSciNetGoogle Scholar
  88. 88.
    Jecklin, H.: La notion de moyenne. Metron 15, 3–11 (1949)MathSciNetGoogle Scholar
  89. 89.
    Jessen, B.: Bemærkinger om konvekse Funktioner og Uligheder imellem Middelværdier. II (Danish), Matematisk Tidsskrift B, pp. 84–95 (1931)Google Scholar
  90. 90.
    Jessen, B.: Über die Verallgemeinerungen des aritmetischen Mittels. Acta Litterarum ac Scientiarum Regiae Universitatis Hungaricae Francisco-Josephinae, Sectio Scientarum Mathematicarum, Szeged 5, 108–116 (1931)zbMATHGoogle Scholar
  91. 91.
    Kahlig, P., Matkowski, J.: On the composition of homogeneous quasi-arithmetic means. J. Math. Anal. Appl. 216, 69–85 (1997)MathSciNetzbMATHGoogle Scholar
  92. 92.
    Kahlig, P., Matkowski, J.: Invariant means related to classical weighted means. Publ. Math. Debrecen 216, 373–387 (2016)MathSciNetzbMATHGoogle Scholar
  93. 93.
    Knaster, B.: Sur une équivalence pour les fonctions. Colloquium Math. 2, 1–4 (1949)MathSciNetzbMATHGoogle Scholar
  94. 94.
    Knopp, K.: Über Reihen mit positiven Gliedern. J. Lond. Math. Soc. 3, 205–211 (1928)zbMATHGoogle Scholar
  95. 95.
    Knopp, K.: Neuere Sätze über Reihen mit positiven Gliedern. Math. Zeitschr. 30, 387–413 (1929)zbMATHGoogle Scholar
  96. 96.
    Kolesárová, A.: Limit properties of quasi-arithmetic means. Fuzzy Sets Syst. 124, 65–71 (2001)MathSciNetzbMATHGoogle Scholar
  97. 97.
    Kolmogoroff, A.: Sur la notion de la moyenne. Rend. Accad. Lincei 6, 388–391 (1930)zbMATHGoogle Scholar
  98. 98.
    Kuczma, M.: An introduction to the theory of functional equations and inequalities. Cauchy’s equation and Jensen’s inequality, Uniwersytet Śla̧ski, Katowice, and Państwowe Wydawnictwo Naukowe, Kraków–Warszawa, 1985 (1st edn); Birkhäuser Verlag, Basel, 2009 (2nd edn, edited by A. Gillanyi)Google Scholar
  99. 99.
    Lagrange, J.L.: Sur une nouvelle Méthode de Calcul Intégrale pour différentielles affectées d’un radical carre, Mem. Acad. R. Sci. Turin II, 2, 252–312 (1784–1785)Google Scholar
  100. 100.
    Lehmer, D.H.: On the compounding of certain means. J. Math. Anal. Appl. 36, 183–200 (1971)MathSciNetzbMATHGoogle Scholar
  101. 101.
    Losonczi, L.: Über den Vergleich von Mittelverten die mit Gewichtsfunktionen gebildet sind. Publ. Math. Debrecen 17, 203–208 (1970)MathSciNetzbMATHGoogle Scholar
  102. 102.
    Losonczi, L.: Equality of two variable weighted means: reduction to differential equations. Aequat. Math. 58, 223–241 (1999)MathSciNetzbMATHGoogle Scholar
  103. 103.
    Losonczi, L.: Equality of two variable Cauchy mean values. Aequat. Math. 65, 61–81 (2003)MathSciNetzbMATHGoogle Scholar
  104. 104.
    Makó, Z., Páles, Z.: On the equality of generalized quasi-arithmetic means. Publ. Math. Debrecen 72, 407–440 (2008)MathSciNetzbMATHGoogle Scholar
  105. 105.
    Makó, Z., Páles, Z.: The invariance of the arithmetic mean with respect to generalized quasi-arithmetic means. J. Math. Anal. Appl. 353, 8–23 (2009)MathSciNetzbMATHGoogle Scholar
  106. 106.
    Maksa, G., Páles, Z.: Remarks on the comparison of weighted quasiarithmetic. Colloq. Math. 120, 77–84 (2010)MathSciNetzbMATHGoogle Scholar
  107. 107.
    Marichal, J.L.: On an axiomatization of the quasi-arithmetic mean values without the symmetry axiom. Aequat. Math. 59, 74–83 (2000)MathSciNetzbMATHGoogle Scholar
  108. 108.
    Matkowski, J.: Complementary quasi-arithmetic means. In: Leaflets in Mathematics, Proc. Numbers, Functions, Equations ’98 Internat. Conf. Noszvaj (Hungary), Pecs, 123–124 (1998)Google Scholar
  109. 109.
    Matkowski, J.: Invariant and complementary quasi-arithmetic means. Aequat. Math. 57, 87–107 (1999)MathSciNetzbMATHGoogle Scholar
  110. 110.
    Matkowski, J.: Mean value property and associated functional equations. Aequat. Math. 58, 46–59 (1999)MathSciNetzbMATHGoogle Scholar
  111. 111.
    Matkowski, J.: Iterations of mean-type mappings and invariant means. In: European Conference on Iteration Theory (Muszyna-Złockie, 1998). Ann. Math. Sil. vol. 13, pp. 211–226 (1999)Google Scholar
  112. 112.
    Matkowski, J.: On iteration semigroups of mean-type mappings and invariant means. Aequat. Math. 64, 297–303 (2002)MathSciNetzbMATHGoogle Scholar
  113. 113.
    Matkowski, J.: On invariant generalized Beckenbach-Gini means. In: Daróczy, Z., Páles, Zs. (eds), Functional Equations Results and Advances. in: Advances in Mathematics, vol. 3, Kluwer, Dordrecht, pp. 219–230 (2002)Google Scholar
  114. 114.
    Matkowski, J.: Remark 1 (at the Second Debrecen-Katowice Winter Seminar on Functional Equations and Inequalities, Hajdúszoboszlo, 2002). Ann. Math. Silesianae 16, 93 (2003)Google Scholar
  115. 115.
    Matkowski, J.: Solution of a regularity problem in equality of Cauchy means. Publ. Math. Debrecen 64, 391–400 (2004)MathSciNetzbMATHGoogle Scholar
  116. 116.
    Matkowski, J.: Lagrangian mean-type mappings for which the arithmetic mean is invariant. J. Math. Anal. Appl. 309, 15–24 (2005)MathSciNetzbMATHGoogle Scholar
  117. 117.
    Matkowski, J.: On iterations of means and functional equations, Iteration Theory (ECIT’04) Grazer Math. Ber. 350, 184–197 (2006)Google Scholar
  118. 118.
    Matkowski, J.: Iterations of the mean-type mappings, In: Iteration theory (ECIT’08), A. N. Sharkovsky, I. M. Susko (eds.), Grazer Math. Ber., Bericht Nr., 354, 158–179 (2009)Google Scholar
  119. 119.
    Matkowski, J.: Generalized weighted quasi-arithmetic means. Aequat. Math. 79, 203–212 (2010)MathSciNetzbMATHGoogle Scholar
  120. 120.
    Matkowski, J.: On weighted extensions of Bajraktarevic means. Sarajevo J. Math. 6, 169–188 (2010)MathSciNetzbMATHGoogle Scholar
  121. 121.
    Matkowski, J.: Quotient mean, its invariance with respect to a quasi-arithmetic mean-type mapping, and some applications. Aequat. Math. 82, 247–253 (2011)MathSciNetzbMATHGoogle Scholar
  122. 122.
    Matkowski, J.: Invariance of the Cauchy means with respect to Lagrange mean-type mappings of the same generators. Acta Math. Hungar. 132, 92–106 (2011)MathSciNetzbMATHGoogle Scholar
  123. 123.
    Matkowski, J.: Invariance of a quasi-arithmetic mean with respect to a system of generalized Bajraktarević means. Appl. Math. Lett. 25, 1651–1655 (2012)MathSciNetzbMATHGoogle Scholar
  124. 124.
    Matkowski, J.: Generalized weighted arithmetic means. In: Rassias, T., Brzdȩk, J. (eds.) Functional Equations in Mathematical Analysis, pp. 563–582. Springer, New York (2012)Google Scholar
  125. 125.
    Matkowski, J.: Invariance of Bajraktarevic mean with respect to quasi-arithmetic means. Publ. Math. Debrecen 80, 441–455 (2012)MathSciNetzbMATHGoogle Scholar
  126. 126.
    Matkowski, J.: Halfconvex functions and equality of Daróczy-Páles conjugate means. Aequat. Math. 86, 171–185 (2013)zbMATHGoogle Scholar
  127. 127.
    Matkowski, J.: Iterations of the mean-type mappings and uniqueness of invariant means. Ann. Univ. Sci. Budapest. Sect. Comput. 41, 145–158 (2013)MathSciNetzbMATHGoogle Scholar
  128. 128.
    Matkowski, J.: Generalized weighted quasi-arithmetic means and the Kolmogorov–Nagumo theorem. Colloq. Math. 133, 35–49 (2013)MathSciNetzbMATHGoogle Scholar
  129. 129.
    Matkowski, J.: Invariance of the Bajraktarević means with respect to Beckenbach-Gini means. Math. Slovaca 63, 493–502 (2013)MathSciNetzbMATHGoogle Scholar
  130. 130.
    Matkowski, J.: Invariance identity in the class of generalized quasi-arithmetic means. Colloq. Math. 137, 221–228 (2014)MathSciNetzbMATHGoogle Scholar
  131. 131.
    Matkowski, J., Páles, Z.: Characterization of generalized quasi-arithmetic means. Acta Sci. Math. (Szeged) 81, 447–456 (2015)MathSciNetzbMATHGoogle Scholar
  132. 132.
    Matkowski, J., Volkmann, P.: A functional equation with two unknown functions, http://www.mathematik.uni-karlsruhe.de/~semlv, Seminar LV 30, 6 pp. (28.04.2008)
  133. 133.
    Matkowski, J., Wróbel, M.: A functional equation with two unknown functions. Ann. Math. Sil. 10, 7–12 (1996)zbMATHGoogle Scholar
  134. 134.
    Matkowski, J., Nowicka, M., Witkowski, A.: Explicit solutions of the invariance equation for means. Results Math. 71, 397–410 (2017)MathSciNetzbMATHGoogle Scholar
  135. 135.
    Mitrinović, D.S., Bullen, P.S., Vasić, P.M.: Sredine i sa njima povezane nejednakosti. I (Serbo-Croatian), Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Math. Fiz. 600, 232 pp (1977)Google Scholar
  136. 136.
    Mitrinović, D.S., Vasić, P.M.: Uvodenje mladih u nauc̆ni rad. V: Sredine (Serbo-Croatian), Mathematic̆ka Biblioteka 40, Beograd (1969)Google Scholar
  137. 137.
    Nagumo, M.: Uber eine Klasse der Mittelwerte. Jpn. J. Math. 7, 71–79 (1930)zbMATHGoogle Scholar
  138. 138.
    Oxtoby, J.C.: Measure and category, Graduate Texts in Mathematics, vol. 2. Springer, New York (1971)Google Scholar
  139. 139.
    Páles, Z.: On the characterization of quasi-arithmetic means with weight function. Aequat. Math. 32, 171–194 (1987)MathSciNetzbMATHGoogle Scholar
  140. 140.
    Páles, Z.: On two-variable functional inequalities. C.R. Math. Rep. Acad. Sci. Canada 10, 25–28 (1988)MathSciNetzbMATHGoogle Scholar
  141. 141.
    Páles, Z., Zakaria, A.: On the invariance equation for two-variable weighted nonsymmetric Bajraktarević means (submitted)Google Scholar
  142. 142.
    Pasteczka, P.: Scale of quasi-arithmetic means determined by an invariance property. J. Differ. Equ. Appl. 21, 1321–1327 (2015)MathSciNetzbMATHGoogle Scholar
  143. 143.
    Pasteczka, P.: A new estimate of the difference among quasi-arithmetic means. Math. Inequal. Appl. 18, 1321–1327 (2015)MathSciNetzbMATHGoogle Scholar
  144. 144.
    Pasteczka, P.: Limit properties in a family of quasi-arithmetic means. Aequat. Math. 90, 773–785 (2016)MathSciNetzbMATHGoogle Scholar
  145. 145.
    Pasteczka, P.: Iterated quasi-arithmetic mean-type mappings. Colloq. Math. 144, 215–228 (2016)MathSciNetzbMATHGoogle Scholar
  146. 146.
    Ryll-Nardzewski, C.: Sur les moyennes. Studia Math. 11, 31–37 (1949)MathSciNetzbMATHGoogle Scholar
  147. 147.
    Schoenberg, I.J.: Mathemaical Time Exposures. Mathematical Association of America, Washington (1982)Google Scholar
  148. 148.
    Sonubon, A., Orankitjaroen, S.: A functional equation with conjugate means derived from a weighted arithmetic mean. Malays. J. Math Sci. 9, 21–31 (2015)MathSciNetGoogle Scholar
  149. 149.
    Sutô, O.: Studies on some functional equations I. Tôhoku Math. J. 6, 1–15 (1914)zbMATHGoogle Scholar
  150. 150.
    Sutô, O.: Studies on some functional equations II. Tôhoku Math. J. 6, 82–101 (1914)zbMATHGoogle Scholar
  151. 151.
    Stolarsky, K.B.: Generalizations of the logarithmic mean. Math. Mag. 48, 87–92 (1975)MathSciNetzbMATHGoogle Scholar
  152. 152.
    Thielman, H.P.: On generalized means. Proc. Iowa Acad. Sci. 56, 241–247 (1949)MathSciNetGoogle Scholar
  153. 153.
    Toader, Gh., and Costin, I.: Means in mathematical analysis. Bivariate means, Mathematical Analysis and its Application Series, Academic Press, An imprint of Elsevier, London (2018)zbMATHGoogle Scholar
  154. 154.
    Toader, G., Costin, I., Toader, S.: Invariance in some families of means, Functional equations in mathematical analysis, 709–717. Springer Optim. Appl., 52, Springer, New York (2012)Google Scholar
  155. 155.
    Witkowski, A.: On invariance equation for means of power growth. Math. Inequal. Appl. 17, 1091–1094 (2014)MathSciNetzbMATHGoogle Scholar
  156. 156.
    Zhang, Q., Bing, X.: An invariance of geometric mean with respect to generalized quasi-arithmetic means. J. Math. Anal. Appl. 379, 65–74 (2011)MathSciNetzbMATHGoogle Scholar
  157. 157.
    Zhang, Q., Bing, X.: On some invariance of the quotient mean with respect to Makó–Páles means. Aequat. Math. 91, 1147–1156 (2017)zbMATHGoogle Scholar

Copyright information

© The Author(s) 2018

Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.Faculty of Mathematics, Computer Science and EconometricsUniversity of Zielona GóraZielona GóraPoland

Personalised recommendations