Aequationes mathematicae

, Volume 91, Issue 2, pp 331–352 | Cite as

On the covering radius of lattice zonotopes and its relation to view-obstructions and the lonely runner conjecture

  • Matthias Henze
  • Romanos-Diogenes Malikiosis


The goal of this paper is twofold; first, we show the equivalence between certain problems in geometry, such as view-obstructions, billiard ball motions, and the estimation of covering radii of lattice zonotopes. Second, we utilize the latter interpretation and provide upper bounds of said radii by virtue of the Flatness Theorem. Our results allow us to specify how rational dependencies in the view-direction influence the obstruction parameter. These problems are similar in nature to the famous Lonely Runner Problem for which we draw analogous conclusions.


Covering radius zonotope view-obstruction Lonely Runner Conjecture billiard ball motion Flatness theorem 

Mathematics Subject Classification

Primary 52C17 Secondary 11H31 11J13 52C07 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Banaszczyk, W.: Inequalities for convex bodies and polar reciprocal lattices in \(\mathbf{R}^n\). II. Application of \(K\)-convexity. Discrete Comput. Geom. 16(3), 305–311 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Barajas, J., Serra, O.: The lonely runner with seven runners. Electron. J. Combin. 15, 48 (2008) (electronic)Google Scholar
  3. 3.
    Barvinok, A.: A Course in Convexity, Graduate Studies in Mathematics, vol. 54. American Mathematical Society, Providence (2002)zbMATHGoogle Scholar
  4. 4.
    Bohman, T., Holzman, R., Kleitman, D.: Six lonely runners. Electron. J. Combin. 8(2), R3 (2001) (electronic)Google Scholar
  5. 5.
    Cusick, T.W.: View-obstruction problems. Aequ. Math. 9, 165–170 (1973)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Czerwiński, S.: Random runners are very lonely. J. Combin. Theory Ser. A 119(6), 1194–1199 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Gruber, P.M.: Convex and Discrete Geometry, Grundlehren der Mathematischen Wissenschaften, vol. 336. Springer, Berlin (2007)Google Scholar
  8. 8.
    Gruber, P.M., Lekkerkerker, C.G.: Geometry of Numbers, 2 edn., North-Holland Mathematical Library, vol. 37, North-Holland Publishing Co., Amsterdam (1987)Google Scholar
  9. 9.
    Henk, M., Thiel, C.: Restricted successive minima. Pacific J. Math. 269(2), 341–354 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Khinchin, A.Y.: A quantitative formulation of the approximation theory of Kronecker. Izvestiya Akad. Nauk SSSR. Ser. Mat. 12(2), 113–122 (1948)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Kronecker, L.: Näherungsweise ganzzahlige Auflösung linearer Gleichungen. Berl. Ber., 1271–1300 (1885)Google Scholar
  12. 12.
    Mac Lane, S., Birkhoff, G.: Algebra, 2nd edn. Macmillan Inc., New York (1979)Google Scholar
  13. 13.
    Malikiosis, R.-D.: Rotations by roots of unity and Diophantine approximation. Ramanujan J. 9 (2016) doi: 10.1007/s11139-016-9781-5
  14. 14.
    Martinet, J.: Perfect lattices in Euclidean spaces, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 327. Springer, Berlin (2003)Google Scholar
  15. 15.
    Perarnau, G., Serra, O.: Correlation among runners and some results on the lonely runner conjecture. Electron. J. Combin. 23(1), 1.50 (2016) (electronic)Google Scholar
  16. 16.
    Schoenberg, I.J.: Extremum problems for the motions of a billiard ball. II. The \(L_{\infty }\) norm. Nederl. Akad. Wetensch. Proc. Ser. A 79=Indag. Math. 38(3), 263–279 (1976)Google Scholar
  17. 17.
    Shephard, G.C.: Combinatorial properties of associated zonotopes. Can. J. Math. 26, 302–321 (1974)Google Scholar
  18. 18.
    Wills, J.M.: Zur simultanen homogenen diophantischen Approximation I. Monatsh. Math. 72, 254–263 (1968)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing 2017

Authors and Affiliations

  1. 1.Institut für MathematikFreie Universität BerlinBerlinGermany
  2. 2.Technische Universität Berlin, Institut für MathematikBerlinGermany

Personalised recommendations