Aequationes mathematicae

, Volume 90, Issue 4, pp 705–718 | Cite as

On the Jensen functional and superquadraticity

  • Flavia-Corina Mitroi-Symeonidis
  • Nicuşor Minculete
Article

Abstract

In this note we give a recipe which describes upper and lower bounds for the Jensen functional under superquadraticity conditions. Some results involve the Chebychev functional. We give a more general definition of these functionals and establish analogous results.

Keywords

Jensen functional Chebychev functional superquadratic function 

Mathematics Subject Classification

Primary 26B25 Secondary 26D15 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abramovich S., Dragomir S.S.: Normalized Jensen functional, superquadracity and related inequalities. Int. Ser. Numer. Math. 157, 217–228 (2009)MathSciNetMATHGoogle Scholar
  2. 2.
    Abramovich, S., Jameson, G., Sinnamon, G.: Refining Jensen’s inequality. Bull. Math. Soc. Sci. Math. Roum. (N.S.) 47(95), no. 1–2, 3–14 (2004)Google Scholar
  3. 3.
    Abramovich, S., Ivelić, S., Pečarić, J.: Refinement of inequalities related to convexity via superquadraticity, weaksuperquadraticity and superterzaticity. In: Inequalities and Applications 2010, pp. 191–207, International Series of Numerical Mathematics, 161. Birkhauser/Springer, Basel (2012)Google Scholar
  4. 4.
    Cerone P., Dragomir S.S.: A refinement of the Grü ss inequality and applications. Tamkang J. Math. 38, 37–49 (2007)MathSciNetMATHGoogle Scholar
  5. 5.
    Dragomir, S.S.: A survey on Cauchy–Bunyakovsky–Schwarz type discrete inequalities. J. Inequal. Pure Appl. Math. 4(3), Art. 63 (2003)Google Scholar
  6. 6.
    Dragomir S.S.: Bounds for the normalised Jensen functional. Bull. Aust. Math. Soc. 74, 471–478 (2006)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Mitroi F.-C.: Estimating the normalized Jensen functional. J. Math. Inequal. 5(4), 507–521 (2011)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Mitroi, F.-C.: Connection between the Jensen and the Chebychev functionals. In: Bandle, C., Gilanyi, A., Losonczi, L., Plum, M. (eds.) Inequalities and Applications 2010, Part 5, vol. 161, pp. 217–227. International Series of Numerical Mathematics, 1. Dedicated to the Memory of Wolfgang Walter, Birkhäuser, Basel (2012). doi:10.1007/978-3-0348-0249-9_17
  9. 9.
    Niculescu C.P.: An extension of Chebyshev’s inequality and its connection with Jensen’s inequality. J. Inequal. Appl. 6, 451–462 (2001)MathSciNetMATHGoogle Scholar
  10. 10.
    Walker S.G.: On a lower bound for the Jensen inequality. SIAM J. Math. Anal. 46(5), 3151–3157 (2014). doi:10.1137/140954015 MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer Basel 2015

Authors and Affiliations

  • Flavia-Corina Mitroi-Symeonidis
    • 1
  • Nicuşor Minculete
    • 2
  1. 1.Faculty of Engineering SciencesLUMINA - University of South-East EuropeBucharestRomania
  2. 2.Transilvania University of BraşovBrasovRomania

Personalised recommendations