Advertisement

Aequationes mathematicae

, Volume 89, Issue 3, pp 459–472 | Cite as

Von Staudt’s theorem revisited

  • Hans HavlicekEmail author
Article

Abstract

We establish a version of von Staudt’s theorem on mappings which preserve harmonic quadruples for projective lines over (not necessarily commutative) rings with “sufficiently many” units, in particular 2 has to be a unit.

Mathematics Subject Classification (2010)

51A10 51C05 17C50 

Keywords

Harmonic quadruple harmonicity preserver projective line over a ring Jordan homomorphism 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ancochea G.: Sobre el teorema fundamental de la geometria proyectiva. Revista Mat. Hisp. Am. (ser. 4) 1, 37–42 (1941)MathSciNetGoogle Scholar
  2. 2.
    Ancochea G.: Le théorème de von Staudt en géométrie projective quaternionienne. J. Reine Angew. Math. 184, 193–198 (1942)MathSciNetGoogle Scholar
  3. 3.
    Ancochea G.: On semi-automorphisms of division algebras.. Ann. Math. (ser. 2) 48, 147–153 (1947)zbMATHMathSciNetGoogle Scholar
  4. 4.
    Baer, R.: Linear Algebra and Projective Geometry. Academic Press, New York (1952)Google Scholar
  5. 5.
    Bartolone C.: Jordan homomorphisms, chain geometries and the fundamental theorem. Abh. Math. Sem. Univ. Hamburg 59, 93–99 (1989)CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    Bartolone, C., Bartolozzi, F.: Topics in geometric algebra over rings. In: Kaya, R., Plaumann, P., Strambach, K. (eds.) Rings and Geometry, pp. 353–389. Reidel, Dordrecht (1985)Google Scholar
  7. 7.
    Bartolone C., Di Franco F.: A remark on the projectivities of the projective line over a commutative ring. Math. Z. 169, 23–29 (1979)CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    Benz W.: Das von Staudtsche Theorem in der Laguerregeometrie. J. Reine Angew. Math. 214/215, 53–60 (1964)MathSciNetGoogle Scholar
  9. 9.
    Benz, W.: Vorlesungen über Geometrie der Algebren. Springer, Berlin (1973)Google Scholar
  10. 10.
    Benz, W., Leissner, W., Schaeffer, H.: Kreise, Zykel, Ketten. Zur Geometrie der Algebren. Ein Bericht. Jber. Deutsch. Math. Verein. 74, 107–122 (1972)Google Scholar
  11. 11.
    Benz, W., Samaga, H.-J., Schaeffer, H.: Cross ratios and a unifying treatment of von Staudt’s notion of reeller Zug. In: Plaumann, P., Strambach, K. (eds.) Geometry—von Staudt’s Point of View, pp. 127–150. Reidel, Dordrecht (1981)Google Scholar
  12. 12.
    Bertram W.: The geometry of null systems, Jordan algebras and von Staudt’s theorem. Ann. Inst. Fourier (Grenoble) 53(1), 193–225 (2003)CrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    Blunck A.: Cross-ratios in Moufang planes. J. Geom. 40(1-2), 20–25 (1991)CrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    Blunck A., Havlicek H.: Projective representations I. Projective lines over rings. Abh. Math. Sem. Univ. Hamburg 70, 287–299 (2000)CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    Blunck A., Havlicek H.: The connected components of the projective line over a ring. Adv. Geom. 1, 107–117 (2001)CrossRefzbMATHMathSciNetGoogle Scholar
  16. 16.
    Blunck A., Havlicek H.: The dual of a chain geometry. J. Geom. 72, 27–36 (2001)CrossRefzbMATHMathSciNetGoogle Scholar
  17. 17.
    Blunck A., Havlicek H.: Jordan homomorphisms and harmonic mappings. Monatsh. Math. 139, 111–127 (2003)CrossRefzbMATHMathSciNetGoogle Scholar
  18. 18.
    Blunck A., Havlicek H.: On distant-isomorphisms of projective lines. Aequationes Math. 69, 146–163 (2005)CrossRefzbMATHMathSciNetGoogle Scholar
  19. 19.
    Blunck, A., Herzer, A.: Kettengeometrien—Eine Einführung. Shaker Verlag, Aachen (2005)Google Scholar
  20. 20.
    Brehm U.: Algebraic representation of mappings between submodule lattices. J. Math. Sci. (N. Y.) 153(4), 454–480 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  21. 21.
    Buekenhout F.: Une généralisation du théorème de von Staudt-Hua. Acad. R. Belg. Bull. Cl. Sci. (ser. 5) 51, 1282–1293 (1965)MathSciNetGoogle Scholar
  22. 22.
    Chkhatarashvili D.: K. von Staudt’s theorem over Ore domains. Bull. Georgian Acad. Sci. 158(1), 18–20 (1998)zbMATHMathSciNetGoogle Scholar
  23. 23.
    Cirlincione L., Enea M.R.: Una generalizzazione del birapporto sopra un anello. Rend. Circ. Mat. Palermo (II) 39, 271–280 (1990)CrossRefzbMATHMathSciNetGoogle Scholar
  24. 24.
    Cohn P.M.: On the structure of the GL2 of a ring. Inst. Hautes Etudes Sci. Publ. Math. 30, 365–413 (1966)CrossRefzbMATHGoogle Scholar
  25. 25.
    Cojan, St. P.: A generalization of the theorem of von Staudt-Hua-Buekenhout. Mathematica (Cluj) (ser. 52) 27, 93–96 (1985)Google Scholar
  26. 26.
    Ferrar, J.C.: Cross-ratios in projective and affine planes. In: Plaumann, P., Strambach, K. (eds.) Geometry—von Staudt’s Point of View, pp. 101–125. Reidel, Dordrecht (1981)Google Scholar
  27. 27.
    Hartshorne R.: Publication history of von Staudt’s Geometrie der Lage. Arch. Hist. Exact Sci. 62(3), 297–299 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  28. 28.
    Havlicek H.: Divisible designs, Laguerre geometry, and beyond. J. Math. Sci. (N.Y.) 186(6), 882–926 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  29. 29.
    Herstein, I.N.: Topics in Ring Theory. The University of Chicago Press, Chicago, London (1969)Google Scholar
  30. 30.
    Herzer A.: On isomorphisms of chain geometries. Note Mat. 7, 251–270 (1987)zbMATHMathSciNetGoogle Scholar
  31. 31.
    Herzer, A.: Chain geometries. In: Buekenhout, F. (ed.) Handbook of Incidence Geometry, pp. 781–842. Elsevier, Amsterdam (1995)Google Scholar
  32. 32.
    Hoffman A.J.: A note on cross ratio. Am. Math. Monthly 58, 613–614 (1951)CrossRefGoogle Scholar
  33. 33.
    Hua L.-K.: Geometries of matrices. I Generalizations of von Staudt’s theorem. Trans. Am. Math. Soc. 57, 441–481 (1945)Google Scholar
  34. 34.
    Hua L.-K.: Geometries of matrices. I1Arithmetical construction. Trans. Am. Math. Soc. 57, 482–490 (1945)zbMATHGoogle Scholar
  35. 35.
    Hua L.-K.: On the automorphisms of a sfield. Proc. Nat. Acad. Sci. USA 35, 386–389 (1949)CrossRefzbMATHGoogle Scholar
  36. 36.
    Hua, L.-K.: Fundamental theorem of the projective geometry on a line and geometry of matrices. In: Comptes Rendus du Premier Congrès des Mathématiciens Hongrois, 27 Août–2 Septembre 1950, pp. 317–325. Akadémiai Kiadó, Budapest (1952)Google Scholar
  37. 37.
    Huang, L.-P.: Geometry of Matrices over Ring. Science Press, Beijing (2006)Google Scholar
  38. 38.
    Jacobson, N.: Structure and Representation of Jordan Algebras. American Mathematical Society, Providence (1968)Google Scholar
  39. 39.
    James D.G.: Projective homomorphisms and von Staudt’s theorem. Geom. Dedicata 13(3), 291–294 (1982)CrossRefzbMATHMathSciNetGoogle Scholar
  40. 40.
    Karzel, H., Kroll, H.-J.: Geschichte der Geometrie seit Hilbert. Wiss. Buchges., Darmstadt (1988)Google Scholar
  41. 41.
    Klotzek B.: Eine Verallgemeinerung des Satzes von v. Staudt-Hua. Wiss. Z. Pädagog. Hochsch. “Karl Liebknecht” Potsdam 32(1), 169–172 (1988)zbMATHMathSciNetGoogle Scholar
  42. 42.
    Kulkarni M.: Fundamental theorem of projective geometry over a commutative ring. Indian J. Pure Appl. Math. 11(12), 1561–1565 (1980)zbMATHMathSciNetGoogle Scholar
  43. 43.
    Lam, T.Y.: Lectures on Modules and Rings. Springer, New York (1999)Google Scholar
  44. 44.
    Lashkhi A.A.: Harmonic mappings and collineations of modules (Russian). Soobshch. Akad. Nauk Gruzin. SSR 133(3), 497–500 (1989)zbMATHMathSciNetGoogle Scholar
  45. 45.
    Lashkhi A.A.: Harmonic mappings of modules (Russian). Mat. Zametki 47(1), 161–163 (1990)zbMATHMathSciNetGoogle Scholar
  46. 46.
    Lashkhi A.A.: Harmonic maps over rings. Georgian Mat. J. 4, 41–64 (1997)CrossRefzbMATHMathSciNetGoogle Scholar
  47. 47.
    Limaye B.V., Limaye N.B.: Fundamental theorem for the projective line over non-commutative local rings. Arch. Math. (Basel) 28, 102–109 (1977)CrossRefMathSciNetGoogle Scholar
  48. 48.
    Limaye, B.V., Limaye, N.B.: Correction to: Fundamental theorem for the projective line over non-commutative local rings. Arch. Math. (Basel) 29, 672 (1977)Google Scholar
  49. 49.
    Limaye B.V., Limaye N.B.: The fundamental theorem for the projective line over commutative rings. Aequationes Math. 16, 275–281 (1977)CrossRefzbMATHMathSciNetGoogle Scholar
  50. 50.
    Limaye, N.B.: Projectivities over local rings. Math. Z. 121, 175–180 (1971)Google Scholar
  51. 51.
    Limaye, N.B.: Cross-ratios and projectivities of a line. Math. Z. 129, 49–53 (1972)Google Scholar
  52. 52.
    McDonald B.R.: Projectivities over rings with many units. Comm. Algebra 9(2), 195–204 (1981)CrossRefzbMATHMathSciNetGoogle Scholar
  53. 53.
    Schaeffer H.: Das von Staudtsche Theorem in der Geometrie der Algebren. J. Reine Angew. Math. 267, 133–142 (1974)zbMATHMathSciNetGoogle Scholar
  54. 54.
    Schreier, O., Sperner, E.: Einführung in die analytische Geometrie und Algebra. Bd. II. Hamburger mathematische Einzelschriften, Heft 19. B. G. Teubner, Leipzig (1935)Google Scholar
  55. 55.
    von Staudt, K.G.C.: Geometrie der Lage. Bauer und Raspe (Julius Merz), Nürnberg (1847)Google Scholar
  56. 56.
    Veldkamp, F.D.: Geometry over rings. In: Buekenhout, F. (ed.) Handbook of Incidence Geometry, pp. 1033–1084. Elsevier, Amsterdam (1995)Google Scholar
  57. 57.
    Voelke J.-D.: Le théorème fondamental de la géométrie projective: évolution de sa preuve entre 1847 et 1900. Arch. Hist. Exact Sci. 62(3), 243–296 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  58. 58.
    Wan, Z.-X.: Geometry of Matrices. World Scientific, Singapore (1996)Google Scholar

Copyright information

© Springer Basel 2013

Authors and Affiliations

  1. 1.Institut für Diskrete Mathematik und GeometrieTechnische UniversitätWienAustria

Personalised recommendations