Advertisement

Aequationes mathematicae

, Volume 83, Issue 1–2, pp 153–189 | Cite as

On Birkhoff orthogonality and isosceles orthogonality in normed linear spaces

  • Javier Alonso
  • Horst Martini
  • Senlin WuEmail author
Article

Abstract

We survey mainly recent results on the two most important orthogonality types in normed linear spaces, namely on Birkhoff orthogonality and on isosceles (or James) orthogonality. We lay special emphasis on their fundamental properties, on their differences and connections, and on geometric results and problems inspired by the respective theoretical framework. At the beginning we also present other interesting types of orthogonality. This survey can also be taken as an update of existing related representations.

Mathematics Subject Classification (2000)

46B20 46C15 52A21 

Keywords

Real normed linear space Minkowski space inner product space Birkhoff orthogonality isosceles orthogonality James orthogonality bisectors Zindler curves 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alber Y.I.: James orthogonality and orthogonal decompositions of Banach spaces. J. Math. Anal. Appl. 312(1), 330–342 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Alonso, J.: Ortogonalidad en espacios normados. PhD thesis, Universidad de Extremadura (1984)Google Scholar
  3. 3.
    Alonso J.: Uniqueness properties of isosceles orthogonality in normed linear spaces. Ann. Sci. Math. Québec 18(1), 25–38 (1994)zbMATHMathSciNetGoogle Scholar
  4. 4.
    Alonso, J.: Some properties of Birkhoff and isosceles orthogonality in normed linear spaces. In: Inner Product Spaces and Applications, Pitman Res. Notes Math. Ser., vol. 376, pp. 1–11. Longman, Harlow (1997)Google Scholar
  5. 5.
    Alonso J., Benítez C.: The Joly’s construction: a common property of some generalized orthogonalities. Bull. Soc. Math. Belg. Sér. B 39(3), 277–285 (1987)zbMATHGoogle Scholar
  6. 6.
    Alonso J., Benítez C.: Orthogonality in normed linear spaces: a survey. I. Main properties. Extracta Math. 3(1), 1–15 (1988)MathSciNetGoogle Scholar
  7. 7.
    Alonso J., Benítez C.: Some characteristic and noncharacteristic properties of inner product spaces. J. Approx. Theory 55(3), 318–325 (1988)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Alonso J., Benítez C.: Orthogonality in normed linear spaces: a survey. II. Relations between main orthogonalities. Extracta Math. 4(3), 121–131 (1989)MathSciNetGoogle Scholar
  9. 9.
    Alonso J., Benítez C.: Area orthogonality in normed linear spaces. Arch. Math. (Basel) 68(1), 70–76 (1997)MathSciNetGoogle Scholar
  10. 10.
    Alonso J., Martini H., Mustafaev Z.: On orthogonal chords in normed planes. Rocky Mt. J. Math. 41, 23–35 (2011)zbMATHCrossRefGoogle Scholar
  11. 11.
    Alonso J., Soriano M.L.: On height orthogonality in normed linear spaces. Rocky Mt. J. Math. 29(4), 1167–1183 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Alsina C., Cruells P., Tomàs M.S.: Isosceles trapezoids, norms and inner products. Arch. Math. (Basel) 72(3), 233–240 (1999)zbMATHMathSciNetGoogle Scholar
  13. 13.
    Alsina C., Guijarro P., Tomás M.S.: A characterization of inner product spaces based on orthogonal relations related to height’s theorem. Rocky Mt. J. Math. 25(3), 843–849 (1995)zbMATHCrossRefGoogle Scholar
  14. 14.
    Amir, D.: Characterizations of inner product spaces. In: Operator Theory: Advances and Applications, vol. 20. Birkhäuser, Basel (1986)Google Scholar
  15. 15.
    Aurenhammer F.: Voronoi diagrams—a survey of a fundamental geometric data structure. ACM Comput. Surv. 23(3), 345–405 (1991)CrossRefGoogle Scholar
  16. 16.
    Aurenhammer F., Klein R.: Voronoi diagrams. In: Sack, J.-R., Urrutia, J. (eds) Handbook of Computational Geometry, pp. 201–290. North-Holland, Amsterdam (2000)CrossRefGoogle Scholar
  17. 17.
    Baronti, M.: Su alcuni parametri degli spazi normati. Raporti Scientifico Dell’Instituto di Matematica, Genova, 48 (1980)Google Scholar
  18. 18.
    Baronti M., Papini P.L.: Up and down along rays. Riv. Mat. Univ. Parma (6) 2, 171–189 (1999)MathSciNetGoogle Scholar
  19. 19.
    Benítez C.: A property of Birkhoff orthogonality, and a characterization of pre-Hilbert spaces (Spanish). Collect. Math. 26(3), 211–218 (1975)zbMATHMathSciNetGoogle Scholar
  20. 20.
    Benítez, C.: Orthogonality in normed linear spaces: a classification of the different concepts and some open problems. Rev. Mat. Univ. Complut. Madrid 2(suppl.), 53–57 (1989) [Congress on Functional Analysis (Madrid, 1988)]Google Scholar
  21. 21.
    Benítez C., del Rio M.: Characterization of inner product spaces through rectangle and square inequalities. Rev. Roumaine Math. Pures Appl. 29(7), 543–546 (1984)zbMATHMathSciNetGoogle Scholar
  22. 22.
    Benítez C., Fernández M., Soriano M.L.: Orthogonality of matrices. Linear Algebra Appl. 422(1), 155–163 (2007)zbMATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Benítez C., Przesławski K., Yost D.: A universal modulus for normed spaces. Studia Math. 127(1), 21–46 (1998)zbMATHMathSciNetGoogle Scholar
  24. 24.
    Benítez C., Yáñez D.: Middle points and inner products. Bull. Lond. Math. Soc. 39(5), 811–817 (2007)zbMATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    Benítez C., Yáñez D.: Middle points, medians and inner products. Proc. Am. Math. Soc. 135(6), 1725–1734 (2007)zbMATHCrossRefGoogle Scholar
  26. 26.
    Birkhoff G.: Orthogonality in linear metric spaces. Duke Math. J. 1(2), 169–172 (1935)zbMATHCrossRefMathSciNetGoogle Scholar
  27. 27.
    Blanco A., Turnšek A.: On maps that preserve orthogonality in normed spaces. Proc. R. Soc. Edinb. Sect. A 136(4), 709–716 (2006)zbMATHCrossRefGoogle Scholar
  28. 28.
    Blaschke W.: Räumliche variationsprobleme mit symmetrischer transversalitätsbedingung. Ber. Verh. Sächs. Ges. Wiss. Leipzig. Math. Phys. Kl. 68, 50–55 (1916)Google Scholar
  29. 29.
    Borwein J., Keener L.: The Hausdorff metric and Čebyšev centres. J. Approx. Theory 28(4), 366–376 (1980)zbMATHCrossRefMathSciNetGoogle Scholar
  30. 30.
    Boussouis, B.: Orthogonalité et caractérisation des espaces préhilbertiens. PhD thesis, Université Sidi Mohamed Ben Abdellah, Fès, Morocco (1995)Google Scholar
  31. 31.
    Carlsson S.O.: Orthogonality in normed linear spaces. Ark. Mat. 4, 297–318 (1962)zbMATHCrossRefMathSciNetGoogle Scholar
  32. 32.
    Chelidze G.Z.: On Nordlander’s conjecture in the three-dimensional case. Ark. Mat. 47(2), 267–272 (2009)zbMATHCrossRefMathSciNetGoogle Scholar
  33. 33.
    Chmieliński J.: Linear mappings approximately preserving orthogonality. J. Math. Anal. Appl. 304(1), 158–169 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  34. 34.
    Chmieliński J., Wójcik P.: Isosceles-orthogonality preserving property and its stability. Nonlinear Anal. 72(3-4), 1445–1453 (2010)zbMATHCrossRefMathSciNetGoogle Scholar
  35. 35.
    Clarkson J.A.: Uniformly convex spaces. Trans. Am. Math. Soc. 40(3), 396–414 (1936)CrossRefMathSciNetGoogle Scholar
  36. 36.
    Davis, H.F.: On isosceles orthogonality. Math. Mag. 32, 129–131 (1958/1959)Google Scholar
  37. 37.
    Day M.M.: Some characterizations of inner-product spaces. Trans. Am. Math. Soc. 62, 320–337 (1947)zbMATHCrossRefGoogle Scholar
  38. 38.
    Day M.M.: Strict convexity and smootness of normed spaces. Trans. Am. Math. Soc. 78, 516–528 (1955)zbMATHCrossRefGoogle Scholar
  39. 39.
    Diminnie C.R.: A new orthogonality relation for normed linear spaces. Math. Nachr. 114, 197–203 (1983)zbMATHCrossRefMathSciNetGoogle Scholar
  40. 40.
    Diminnie C.R., Freese R.W., Andalafte E.Z.: An extension of Pythagorean and isosceles orthogonality and a characterization of inner-product spaces. J. Approx. Theory 39(4), 295–298 (1983)zbMATHCrossRefMathSciNetGoogle Scholar
  41. 41.
    Dragomir S.S., Kikianty E.: Orthogonality connected with integral means and characterizations of inner product spaces. J. Geom. 98(1–2), 33–49 (2010)zbMATHCrossRefMathSciNetGoogle Scholar
  42. 42.
    Dragomir S.S., Koliha J.J.: Two mappings related to semi-inner products and their applications in geometry of normed linear spaces. Appl. Math. 45(5), 337–355 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  43. 43.
    Dumitrescu A., Ebbers-Baumann A., Grüne A., Klein R., Rote G.: On the geometric dilation of closed curves, graphs, and point sets. Comput. Geom. 36(1), 16–38 (2007)zbMATHCrossRefMathSciNetGoogle Scholar
  44. 44.
    Ebbers-Baumann A., Grüne A., Klein R.: Geometric dilation of closed planar curves: new lower bounds. Comput. Geom. 37(3), 188–208 (2007)zbMATHCrossRefMathSciNetGoogle Scholar
  45. 45.
    Ficken F.A.: Note on the existence of scalar products in normed linear spaces. Ann. Math. 45(2), 362–366 (1944)zbMATHCrossRefMathSciNetGoogle Scholar
  46. 46.
    Freese R.W., Diminnie C.R., Andalafte E.Z.: A study of generalized orthogonality relations in normed linear spaces. Math. Nachr. 122, 197–204 (1985)zbMATHCrossRefMathSciNetGoogle Scholar
  47. 47.
    Giles J.R.: Classes of semi-inner-product spaces. Trans. Am. Math. Soc. 129, 436–446 (1967)zbMATHCrossRefMathSciNetGoogle Scholar
  48. 48.
    Grüne, A.: Geometric dilation and halving distance. PhD thesis, Universität Bonn (2006)Google Scholar
  49. 49.
    Guijarro P., Tomás M.S.: Characterizations of inner product spaces by geometrical properties of the heights in a triangle. Arch. Math. (Basel) 73(1), 64–72 (1999)zbMATHMathSciNetGoogle Scholar
  50. 50.
    Horváth Á.G.: On bisectors in Minkowski normed spaces. Acta Math. Hungar. 89(3), 233–246 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  51. 51.
    Horváth Á.G.: Bisectors in Minkowski 3-space. Beiträge Algebra Geom. 45(1), 225–238 (2004)zbMATHGoogle Scholar
  52. 52.
    Horváth Á.G.: On shadow boundaries of centrally symmetric convex bodies. Beiträge Algebra Geom. 50(1), 219–233 (2009)zbMATHGoogle Scholar
  53. 53.
    Horváth, Á.G., Martini, H.: Bounded representation and radial projections of bisectors in normed spaces. Rocky Mt. J. Math. (in press)Google Scholar
  54. 54.
    Hudzik H., Wang Y., Sha R.: Orthogonally complemented subspaces in Banach spaces. Numer. Funct. Anal. Optim. 29(7-8), 779–790 (2008)zbMATHCrossRefMathSciNetGoogle Scholar
  55. 55.
    James R.C.: Orthogonality in normed linear spaces. Duke Math. J. 12, 291–302 (1945)zbMATHCrossRefMathSciNetGoogle Scholar
  56. 56.
    James R.C.: Inner product in normed linear spaces. Bull. Am. Math. Soc. 53, 559–566 (1947)zbMATHCrossRefGoogle Scholar
  57. 57.
    James R.C.: Orthogonality and linear functionals in normed linear spaces. Trans. Am. Math. Soc. 61, 265–292 (1947)CrossRefGoogle Scholar
  58. 58.
    James R.C.: Reflexivity and the sup of linear functionals. Israel J. Math. 13, 289–300 (1972)CrossRefMathSciNetGoogle Scholar
  59. 59.
    Ji D., Jia J., Wu S.: Triangles with median and altitude of one side coincide. Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal. 14(Part 2, suppl.), 699–702 (2007)MathSciNetGoogle Scholar
  60. 60.
    Ji D., Li J., Wu S.: On the uniqueness of isosceles orthogonality in normed linear spaces. Results Math. 59(1–2), 157–162 (2011)zbMATHCrossRefMathSciNetGoogle Scholar
  61. 61.
    Ji D., Wu S.: Quantitative characterization of the difference between Birkhoff orthogonality and isosceles orthogonality. J. Math. Anal. Appl. 323(1), 1–7 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  62. 62.
    Joly J.L.: Caractérisations d’espaces hilbertiens au moyen de la constante rectangle. J. Approx. Theory 2, 301–311 (1969)zbMATHCrossRefMathSciNetGoogle Scholar
  63. 63.
    Jordan P., von Neumann J.: On inner products in linear, metric spaces. Ann. Math. (2) 36(3), 719–723 (1935)zbMATHCrossRefGoogle Scholar
  64. 64.
    Kakutani S.: Some characterizations of Euclidean space. Jpn. J. Math. 16, 93–97 (1939)zbMATHMathSciNetGoogle Scholar
  65. 65.
    Kapoor O.P., Prasad J.: Orthogonality and characterizations of inner product spaces. Bull. Austral. Math. Soc. 19(3), 403–416 (1978)zbMATHCrossRefMathSciNetGoogle Scholar
  66. 66.
    Klein R., Langetepe E., Nilforoushan Z.: Abstract Voronoi diagrams revisited. Comput. Geom. Theory Appl. 42(9), 885–902 (2009)zbMATHMathSciNetGoogle Scholar
  67. 67.
    Koldobsky A.: Operators preserving orthogonality are isometries. Proc. R. Soc. Edinb. Sect. A 123(5), 835–837 (1993)zbMATHCrossRefMathSciNetGoogle Scholar
  68. 68.
    Lin P.-K.: A remark on the Singer-orthogonality in normed linear spaces. Math. Nachr. 160, 325–328 (1993)zbMATHCrossRefMathSciNetGoogle Scholar
  69. 69.
    Lorch E.R.: On certain implications which characterize Hilbert space. Ann. Math. (2) 49(3), 523–532 (1948)zbMATHCrossRefMathSciNetGoogle Scholar
  70. 70.
    Lumer G.: Semi-inner-product spaces. Trans. Am. Math. Soc. 100, 29–43 (1961)zbMATHCrossRefMathSciNetGoogle Scholar
  71. 71.
    Marino G., Pietramala P.: A note about inner products on Banach spaces. Boll. Un. Mat. Ital. A (7) 1(3), 425–427 (1987)zbMATHMathSciNetGoogle Scholar
  72. 72.
    Martini H., Spirova M.: The Feuerbach circle and orthocentricity in normed planes. Enseign. Math. (2) 53(3-4), 237–258 (2007)zbMATHMathSciNetGoogle Scholar
  73. 73.
    Martini H., Spirova M.: A new type of orthogonality for normed planes. Czechoslov. Math. J. 60, 339–349 (2010)zbMATHCrossRefMathSciNetGoogle Scholar
  74. 74.
    Martini H., Swanepoel K.J.: Equiframed curves—a generalization of Radon curves. Monatsh. Math. 141(4), 301–314 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  75. 75.
    Martini H., Swanepoel K.J.: The geometry of Minkowski spaces—a survey. II. Expo. Math. 22(2), 93–144 (2004)zbMATHMathSciNetGoogle Scholar
  76. 76.
    Martini H., Swanepoel K.J.: Antinorms and Radon curves. Aequationes Math. 72(1–2), 110–138 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  77. 77.
    Martini H., Swanepoel K.J., Weiß G.: The geometry of Minkowski spaces—a survey. I. Expo. Math. 19(2), 97–142 (2001)zbMATHMathSciNetGoogle Scholar
  78. 78.
    Martini H., Wu S.: Radial projections of bisectors in Minkowski spaces. Extracta Math. 23(1), 7–28 (2008)zbMATHMathSciNetGoogle Scholar
  79. 79.
    Martini H., Wu S.: Geometric dilation of closed curves in normed planes. Comput. Geom. 42(4), 315–321 (2009)zbMATHCrossRefMathSciNetGoogle Scholar
  80. 80.
    Martini H., Wu S.: Minimum chords in Minkowski planes. Results Math. 54(1–2), 127–142 (2009)zbMATHCrossRefMathSciNetGoogle Scholar
  81. 81.
    Martini H., Wu S.: On maps preserving isosceles orthogonality in normed linear spaces. Note Mat. 29(1), 55–59 (2009)zbMATHMathSciNetGoogle Scholar
  82. 82.
    Martini H., Wu S.: On orthocentric systems in strictly convex normed planes. Extracta Math. 24(1), 31–45 (2009)zbMATHMathSciNetGoogle Scholar
  83. 83.
    Martini, H., Wu, S.: On Zindler curves n normed planes. Can. Math. Bull. (in press)Google Scholar
  84. 84.
    Mojškerc B., Turnšek A.: Mappings approximately preserving orthogonality in normed spaces. Nonlinear Anal. 73(12), 3821–3831 (2010)zbMATHCrossRefMathSciNetGoogle Scholar
  85. 85.
    Nordlander G.: The modulus of convexity in normed linear spaces. Ark. Mat. 4(2), 15–17 (1960)zbMATHCrossRefMathSciNetGoogle Scholar
  86. 86.
    Precupanu T., Ionică I.: Heights of a triangle in a linear normed space and Hilbertian norms. An. Ştiinţ. Univ. Al. I. Cuza Iaşi. Mat. (N.S.) 55(1), 35–47 (2009)zbMATHGoogle Scholar
  87. 87.
    Radon J.: Über eine besondere Art ebener Kurven. Ber. Verh. Schs. Ges. Wiss. Leipzig. Math. Phys. Kl. 68, 23–28 (1916) Google Scholar
  88. 88.
    Radon, J.: Gesammelte Abhandlungen. Band 1. Verlag der Österreichischen Akademie der Wissenschaften, Vienna (1987) (with a foreword by Otto Hittmair, Edited and with a preface by Peter Manfred Gruber, Edmund Hlawka, Wilfried Nöbauer and Leopold Schmetterer)Google Scholar
  89. 89.
    Roberts B.D.: On the geometry of abstract vector spaces. Tôhoku Math. J. 39, 42–59 (1934)zbMATHGoogle Scholar
  90. 90.
    Saidi F.B.: Characterisations of orthogonality in certain Banach spaces. Bull. Austral. Math. Soc. 65(1), 93–104 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  91. 91.
    Saidi F.B.: Explicit characterizations of orthogonality in \({l^p_S(\bold C)}\). J. Math. Anal. Appl. 271(2), 493–505 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  92. 92.
    Saidi F.B.: An extension of the notion of orthogonality to Banach spaces. J. Math. Anal. Appl. 267(1), 29–47 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  93. 93.
    Şerb I.: Rectangular modulus, Birkhoff orthogonality and characterizations of inner product spaces. Comment. Math. Univ. Carolin. 40(1), 107–119 (1999)zbMATHMathSciNetGoogle Scholar
  94. 94.
    Sikorska J., Szostok T.: On mappings preserving equilateral triangles in normed spaces. J. Geom. 85(1–2), 149–156 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  95. 95.
    Singer I.: Angles abstraits et fonctions trigonométriques dans les espaces de Banach. Acad. R. P. Romîne. Bul. Şti. Secţ. Şti. Mat. Fiz. 9, 29–42 (1957)zbMATHGoogle Scholar
  96. 96.
    Thompson, A.C.: Minkowski geometry. In: Encyclopedia of Mathematics and its Applications, vol. 63. Cambridge University Press, Cambridge (1996)Google Scholar
  97. 97.
    Troyanski S.: Example of a smooth space whose conjugate has not strictly convex norm. Studia Math. 35, 305–309 (1970)zbMATHMathSciNetGoogle Scholar
  98. 98.
    Vogt A.: Maps which preserve equality of distance. Studia Math. 45, 43–48 (1973)zbMATHMathSciNetGoogle Scholar
  99. 99.
    Wang Y.W., Wang H.: Generalized orthogonal decomposition theorem in Banach space and generalized orthogonal complemented subspace. Acta Math. Sinica (Chin. Ser.) 44(6), 1045–1050 (2001)zbMATHMathSciNetGoogle Scholar
  100. 100.
    Weiss G.: The concepts of triangle orthocenters in Minkowski planes. J. Geom. 74(1–2), 145–156 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  101. 101.
    Zindler, K.: Über konvexe Gebilde. Monatsh. Math. Phys. 31(1), 25–56 (1921)zbMATHCrossRefGoogle Scholar

Copyright information

© Springer Basel AG 2011

Authors and Affiliations

  1. 1.Departamento de MatemáticasUniversidad de ExtremaduraBadajozSpain
  2. 2.Fakultät für MathematikTechnische Universität ChemnitzChemnitzGermany
  3. 3.Department of Applied MathematicsHarbin University of Science and TechnologyHarbinChina

Personalised recommendations