Aequationes mathematicae

, Volume 81, Issue 1–2, pp 185–198 | Cite as

On difference Riccati equations and second order linear difference equations

  • Katsuya Ishizaki


In this paper, we treat difference Riccati equations and second order linear difference equations in the complex plane. We give surveys of basic properties of these equations which are analogues in the differential case. We are concerned with the growth and value distributions of transcendental meromorphic solutions of these equations. Some examples are given.

Mathematics Subject Classification (2000)

Primary 39A13 Secondary 30D35 


Difference Riccati equations linear difference equations meromorphic functions 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bank S.B., Gundersen G., Laine I.: Meromorphic solutions of the Riccati differential equation. Ann. Acad. Sci. Fenn. Ser. A I Math. 6(2), 369–398 (1982)MathSciNetGoogle Scholar
  2. 2.
    Bank S.B., Laine I.: On the zeros of meromorphic solutions and second-order linear differential equations. Comment. Math. Helv. 58(4), 656–677 (1983)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Chiang Y.M., Feng S.J.: On the Nevanlinna characteristic of f(z + η) and difference equations in the complex plane. Ramanujan J. 16(1), 105–129 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Elaydi S.: An Introduction to Difference Equations, Third edition, Undergraduate Texts in Mathematics. Springer, New York (2005)Google Scholar
  5. 5.
    Halburd R.G., Korhonen R.: Difference analogue of the lemma on the logarithmic derivative with applications to difference equations. J. Math. Anal. Appl. 314(2), 477–487 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Halburd R.G., Korhonen R.: Nevanlinna theory for the difference operator. Ann. Acad. Sci. Fenn. Math. 31(2), 463–478 (2006)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Hille E.: Ordinary Differential Equations in the Complex Domain. Dover Publications, Inc., Mineola NY (1997)zbMATHGoogle Scholar
  8. 8.
    Ishizaki K., Yanagihara N.: Wiman-Valiron method for difference equations. Nagoya Math. J. 175, 75–102 (2004)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Jank G., Volkmann L.: Einführung in die Theorie der Ganzen und Meromorphen Funktionen mit Anwendungen auf Differentialgleichungen. Birkhäuser Verlag, Basel-Boston (1985)zbMATHGoogle Scholar
  10. 10.
    Kelley W.G., Peterson A.C.: Difference Equations, An Introduction with Applications, Second Edition. Harcourt/Academic Press, San Diego (2001)Google Scholar
  11. 11.
    Kohno M.: Global Analysis in Linear Differential Equations, Mathematics and Its Applications, vol. 471. Kluwer Academic Publishers, Dordrecht (1999)Google Scholar
  12. 12.
    Laine I.: Nevanlinna Theory and Complex Differential Equations, de Gruyter Studies in Mathematics, vol. 15. Walter de Gruyter & Co., Berlin (1993)Google Scholar
  13. 13.
    Laine I., Yang C.C.: Clunie theorems for difference and q-difference polynomials. J. Lond. Math. Soc. (2) 76(3), 556–566 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Mohon’ko, A.Z., Mohon’ko, V.D.: Estimates of the Nevanlinna characteristics of certain classes of meromorphic function, and their applications to differential equations. Sibirsk. Mat. Zh. 15 1305–1322. (1974) (Russian)Google Scholar
  15. 15.
    Yanagihara N.: Meromorphic solutions of some difference equations. Funkcial. Ekvac. 23, 309–326 (1980)MathSciNetzbMATHGoogle Scholar
  16. 16.
    Ye Z.: The Nevanlinna functions of the Riemann zeta-function. J. Math. Anal. Appl. 233, 425–435 (1999)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer Basel AG 2011

Authors and Affiliations

  1. 1.Department of MathematicsNippon Institute of TechnologyMinamisaitamaJapan

Personalised recommendations