Aequationes mathematicae

, Volume 81, Issue 1–2, pp 177–183 | Cite as

A q-rious positivity

Article

Abstract

The q-binomial coefficients \({\genfrac{[}{]}{0pt}{}{n}{m}= \prod_{i=1}^m (1-q^{n-m+i})/(1-q^i)}\), for integers 0 ≤ m ≤ n, are known to be polynomials with non-negative integer coefficients. This readily follows from the q-binomial theorem, or the many combinatorial interpretations of \({\genfrac{[}{]}{0pt}{}{n}{m}}\). In this note we conjecture an arithmetically motivated generalisation of the non-negativity property for products of ratios of q-factorials that happen to be polynomials.

Mathematics Subject Classification (2000)

Primary 11B65 Secondary 05A10 11B83 11C08 33D15 

Keywords

Binomial coefficients q-binomial coefficients Gaussian polynomials factorial ratios basic hypergeometric series cyclotomic polynomials positivity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Andrews G.E.: On a conjecture of Peter Borwein. J. Symb. Comput. 20, 487–501 (1995)MATHCrossRefGoogle Scholar
  2. 2.
    Berkovich A., Warnaar S.O.: Positivity preserving transformations for q-binomial identities. Trans. Am. Math. Soc. 357, 2291–2351 (2005)MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Bober J.W.: Factorial ratios, hypergeometric series, and a family of step functions. J. Lond. Math. Soc. (2) 79, 422–444 (2009)MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Bressoud D.M.: The Borwein conjecture and partitions with prescribed hook differences. Electron. J. Comb. 3, 14 (1996) #R4MathSciNetGoogle Scholar
  5. 5.
    Catalan E.: Nouvelles Annales de Mathématiques. J. Candidats École Polytech. Normale (2) 13, 207 (1874)Google Scholar
  6. 6.
    Delaygue, E.: Critère pour l’intégralité des coefficients de Taylor des applications miroir. J. Reine Angew. Math. (in press) arXiv: 0912.3776 [math.NT] (2009)Google Scholar
  7. 7.
    Gasper G., Rahman M.: Basic Hypergeometric Series. Encyclopedia Math. Appl., vol. 96, 2nd edn. Cambridge University Press, Cambridge (2004)CrossRefGoogle Scholar
  8. 8.
    Gessel I.: Super ballot numbers. J. Symb. Comput. 14, 179–194 (1992)MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Guo V.J.W., Jouhet F., Zeng J.: Factors of alternating sums of products of binomial and q-binomial coefficients. Acta Arith. 127, 17–31 (2007)MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Landau, E.: Sur les conditions de divisibilité d’un produit de factorielles par un autre. In: Collected Works, vol. I, 116 pp. Thales-Verlag, Essen (1985)Google Scholar
  11. 11.
    Picon, P.A.: Sur un théorème de Landau. Sém. Lotharingien Comb. 4 (1984), #B08k (formely: Publ. IRMA Strasbourg (1984), no. 229/S-08, pp. 75–78)Google Scholar
  12. 12.
    Pólya, G., Szegő, G.: Problems and Theorems in Analysis, vol. II, Grundlehren Math. Wiss., vol. 216. Springer, Berlin (1976)Google Scholar
  13. 13.
    Proctor R.A.: Solution of two difficult combinatorial problems with linear algebra. Am. Math. Mon. 89, 721–734 (1982)MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    von Szily K.: Über die Quadratsummen der Binomialcoefficienten. Ungar. Ber. 12, 84–91 (1894)Google Scholar
  15. 15.
    Warnaar, S.O.: The generalized Borwein conjecture. I. The Burge transform. In: Berndt B.C., Ono K. (eds.) q-Series with Applications to Combinatorics, Number Theory, and Physics. Contemp. Math. vol. 291, pp. 243–267. Amer. Math. Soc., Providence (2001)Google Scholar
  16. 16.
    Warnaar S.O.: The generalized Borwein conjecture. II. Refined q-trinomial coefficients. Discrete Math. 272, 215–258 (2003)MathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    Zeilberger D.: Kathy O’Hara’s constructive proof of the unimodality of the Gaussian polynomials. Am. Math. Mon. 96, 590–602 (1989)MathSciNetMATHCrossRefGoogle Scholar
  18. 18.
    Zudilin W.: On the irrationality measure for a q-analogue of ζ(2). Russ. Acad. Sci. Sb. Math. 193, 1151–1172 (2002)MathSciNetMATHGoogle Scholar

Copyright information

© Springer Basel AG 2010

Authors and Affiliations

  1. 1.School of Mathematics and PhysicsThe University of QueenslandBrisbaneAustralia
  2. 2.School of Mathematical and Physical SciencesThe University of NewcastleCallaghanAustralia

Personalised recommendations