Aequationes mathematicae

, Volume 79, Issue 1–2, pp 157–172 | Cite as

Some new refined Hardy type inequalities with general kernels and measures

  • Shoshana AbramovichEmail author
  • Kristina Krulić
  • Josip Pečarić
  • Lars-Erik Persson


We state and prove some new refined Hardy type inequalities using the notation of superquadratic and subquadratic functions with an integral operator A k defined by
$$ A_kf(x):=\frac{1}{K(x)} \int\limits_{\Omega_2} k(x,y)f(y)d\mu_2(y), $$
where \({k: \Omega_1 \times \Omega_2 \to \mathbb{R}}\) is a general nonnegative kernel, (Ω1, μ 1) and (Ω2, μ 2) are measure spaces and
$$ K(x):=\int\limits_{\Omega_2} k(x,y)d\mu_2(y), \, x \in \Omega_1. $$
The relations to other results of this type are discussed and, in particular, some new integral identities of independent interest are obtained.

Mathematics Subject Classification (2000)

Primary 26D10 Secondary 26D15 


Inequalities Hardy’s inequality Hardy–Hilbert’s inequality kernels measures Hardy type operators superquadratic function subquadratic function integral identities 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abramovich S., Banić S., Matić M.: Superquadratic functions in several variables. J. Math. Anal. Appl. 137(2), 1444–1460 (2007)CrossRefGoogle Scholar
  2. 2.
    Abramovich S., Jameson G., Sinnamon G.: Refining of Jensen’s inequality. Bull. Math. Soc. Sci. Math. Roumanie (N.S.) 47(95), 3–14 (2004)MathSciNetGoogle Scholar
  3. 3.
    Abramovich, S., Jameson, G., Sinnamon, G.: Inequalities for averages of convex and superquadratic functions. J. Inequal. Pure Appl. Math. 7(2) (2004), Art. 70.
  4. 4.
    Carleman, T.: Sur les fonctions quasi-analytiques. Comptes rendus du Ve Congres des Mathematiciens Scandinaves, Helsingfors 1922, pp. 181–196Google Scholar
  5. 5.
    Godunova, E.K.: Inequalities based on convex functions. Izv. Vysh. Uchebn. Zaved. Matematika 47(4), 45–53 (1965) (English transl. in Am. Math. Soc., Transl., II Ser 88, 57–66 (1970))Google Scholar
  6. 6.
    Hardy G.H.: Note on a theorem of Hilbert. Math. Z. 6, 314–317 (1920)CrossRefMathSciNetGoogle Scholar
  7. 7.
    Hardy G.H.: Notes on some points in the integral calculus, LX. An inequality between integrals. Messenger Math. 54, 150–156 (1925)Google Scholar
  8. 8.
    Hardy G.H., Littlewood J.E., Pólya G.: Inequalities. Cambridge University Press, Cambridge (1959)Google Scholar
  9. 9.
    Imoru C.O.: On some integral inequalities related to Hardy’s. Canad. Math. Bull. 20(3), 307–312 (1997)MathSciNetGoogle Scholar
  10. 10.
    Kaijser S., Persson L.-E., Öberg A.: On Carleman and Knopp’s inequalities. J. Approx. Theory 117, 140–151 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Knopp K.: Über Reihen mit positiven Gliedern. J. Lond. Math. Soc. 3, 205–211 (1928)CrossRefGoogle Scholar
  12. 12.
    Krulić K., Pečarić J., Persson L.-E.: Some new Hardy type inequalities with general kernels. Math. Inequal. Appl. 12, 473–485 (2009)MathSciNetGoogle Scholar
  13. 13.
    Kufner A., Maligranda L., Persson L.-E.: The prehistory of the Hardy inequality. Am. Math. Monthly 113, 715–732 (2006)zbMATHMathSciNetCrossRefGoogle Scholar
  14. 14.
    Kufner A., Maligranda L., Persson L.-E.: The Hardy Inequality—About its History and Some Related Results. Vydavatelsky Servis Publishing House, Pilsen (2007)zbMATHGoogle Scholar
  15. 15.
    Kufner A., Persson L.-E.: Weighted inequalities of Hardy type. World Scientific Publishing Co, Singapore (2003)zbMATHGoogle Scholar
  16. 16.
    Oguntuase J.A., Persson L.-E.: Refinement of Hardy’s inequalities via superquadratic and subquadratic functions. J. Math. Anal. Appl. 339, 1305–1312 (2008)zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Oguntuase J.A., Persson L.-E., Essel E.K., Popoola B.A.: Refined multidimensional Hardy-type inequalities via superquadracity. Banach J. Math. Anal. 2(2), 129–139 (2008)zbMATHMathSciNetGoogle Scholar
  18. 18.
    Persson L.-E., Oguntuase J.A.: Refinement of Hardy’s inequality for “all” p. In: Kato, M., Maligranda, L. (eds) Proc. Int. Symp. Banach and Function Spaces II, pp. 129–144. Yokohama Publ, Yokohama (2006)Google Scholar
  19. 19.
    Shum D.T.: On integral inequalities related to Hardy’s. Canad. Math. Bull. 14(2), 225–230 (1971)zbMATHMathSciNetGoogle Scholar

Copyright information

© Birkhäuser / Springer Basel AG 2010

Authors and Affiliations

  • Shoshana Abramovich
    • 1
    Email author
  • Kristina Krulić
    • 2
  • Josip Pečarić
    • 2
  • Lars-Erik Persson
    • 3
  1. 1.Department of MathematicsUniversity of HaifaHaifaIsrael
  2. 2.Faculty of Textile TechnologyUniversity of ZagrebZagrebCroatia
  3. 3.Department of MathematicsLuleå University of TechnologyLuleåSweden

Personalised recommendations