aequationes mathematicae

, Volume 71, Issue 1–2, pp 70–85

Invariance of the arithmetic mean with respect to special mean-type mappings

Research Paper

Summary.

For a continuous and strictly monotonic function f defined on an interval I of positive reals, the function \( M_{f} {\left( {x,y} \right)} = f^{{ - 1}} {\left( {\frac{{xf(x) + yf(y)}} {{x + y}}} \right)},x,y\, \in {I} \) is a mean. Assuming that at least one of f and g is four times continuously differentiable, we prove that if the arithmetic mean A is (Mf ,Mg)-invariant, i.e. if A ○ (Mf ,Mg) = A on I, then
$$ f(x) = C_{1} x^{{ - 1}} + B_{1} \,{\text{and}}\,{\text{g(x) = C}}_{{\text{2}}} x^{{ - 1}} + B_{2} , $$
for some \( C_{{\text{1}}} ,C_{2} ,B_{1} ,B_{{\text{2}}} , \in \mathbb{R},C_{1}C_{2} \ne 0 \). It remains an open question, if the smoothness conditions on the functions f and g can be relaxed.

Mathematics Subject Classification (2000).

Primary 26E60 39B22 

Keywords.

Mean equality of means invariant mean functional equation differential equation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Birkhäuser Verlag, Basel 2006

Authors and Affiliations

  1. 1.Institute of MathematicsUniversity of GdańskGdańskPoland
  2. 2.Institute of MathematicsUniversity of Zielona GóraZielona GóraPoland
  3. 3.Institute of Mathematics, of the Silesian UniversityKatowicePoland

Personalised recommendations